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In this note we shall give some supplemental remarks to the
author’s previous work [5] on Goldbach’s problem. As an application
we shall solve some analogues of Titchmarsh divisor problem. The
details of the latter will appear elsewhere.

We start with stating the following theorem which plays an essen-
tial role in our argument and whose slightly weaker form is proved
nd used in [5].

Theorem 1. Suppose that ,<lb(m)[ x(log x)c with some
positive absolute constant C. Then for any positive constants A and
b (1), there exists a positive constant B such that

E Max , b(m)( E 1-- Li(x/m) t <<x(log x)-](m, d) \p-= am*(mod d)

uniformly for in 0l--(log x)-, where Q--x/(log x)-, mm*=_l

(mod d), Li()= z)-gx +0(1) ad over

In taet, this is a generalization ot Bombieri’s mean value theorem
(namely, c=O and b(1)=1, Cf. [2] and [6]) and Chen’s argument in
We can also prove the following inequality under b(m)<< x-- for
m< x, (log x)- with some f in b <f< 1 in addition to the same
circumstance as above;

Max Max b(m)--l < b(m)((x(logx)-.
mp (mod d)

We call this Theorem 1’. The conclusion in Theorem 1 (similarly or
1’) holds even if we replace 1-Li(x/m) by 1

</ (d) <
pam*(mod d) pam*(mod g)

Lix- We denote this by Theorem 1". When our conclusion holds
(d)

or any positive A and Q=x- with any positive e, we cM1 it the gen-
eralized Halberstam-Richert’s conjecture (G.H.R.).

Now let N be a sufficiently large even integer. Let G(N) be the
number o primes pN such that N--p is a prime. Then

G(N) P(N, N)--M(a)-M(a, 2) + 0(N/)


