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1o Preliminary. We discuss the explosion problem of branching
Markov process under extinction effect. Such a problem was not con-
sidered in [3] and [4], since the existence of extinction brings some
difficulty on the probabilistic consideration. ) The difficulty will be
removed through the auxiliary procedure which will be presented be-
low.

Let S be a locally compact Hausdorff space with the second coun-
tability. Let S be the topological sum of the symmetric product spaces
S, n=O, 1, , with S={} and S=(}. Let X=(9, Xt, P) be
a branching Markov process on the state space S in the sense of .[1].
For X define the extinction time by e0 inf {;Xt=} and the explosion
time by e=inf {t; Xt=z/}. 2) Let {Tt}t>0 be the semi-group of X acting
on Co(S). Set q(x)=limtTtO(x)=P(eo<c) for x eS, where for
each function f on S a function f on S is defined as follows; f(3)= 1,
f(z/)=0 and f(x)=f(x).., f(x) if x=[x, ...,x]eS(), n=l,2, ....
Throughout this article we assume
(Asm.) q(x) is a continuous function on S such that O< q(x)1, x e S.

Let us define the family of operators {t}t>0 for f e C0(S) with a
continuous function f on S such that O<f(x)<1 for x e S.

( 1 ) tf(x)-- 1 .{Tt(q + (1--q)f----(x)--q(x)}, x e S.
1--q(x)

Following [1] {t}t>O is uniquely extended to a branching semi-group
acting on Co(S), and we also denote the extension by {t}t>0. {t}t>O
determines a branching Markov process . on S (cf. [1]). We call the
process . the associated (branching Markov) process to X.
2. Results and the proof.

Lemma 1. Let be the associated process to X, then
(i) X is explosive if and only if is explosive.
(it) If : is explosive with probability one, then

1) For the terminologies used in our note, refer [3] and [4].
2) We define inf
3) C0(S)--{f; continuous function on S which vanishes at the infinities of ’},

where the infinities consist of / and the infinity of the one point compactification
of Sn), n=l,2,


