30. A Note on Explosion of Branching Markov Processes with Extinction

By Michio Shimura
Department of Mathematics, University of Tsukuba
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1976)

1. Preliminary. We discuss the explosion problem of branching Markov process under extinction effect. Such a problem was not considered in [3] and [4], since the existence of extinction brings some difficulty on the probabilistic consideration. ${ }^{1)}$ The difficulty will be removed through the auxiliary procedure which will be presented below.

Let S be a locally compact Hausdorff space with the second countability. Let S be the topological sum of the symmetric product spaces $S^{(n)}, n=0,1, \cdots, \infty$, with $S^{(0)}=\{\partial\}$ and $S^{(\infty)}=\{\Delta\}$. Let $\boldsymbol{X}=\left(\Omega, \boldsymbol{X}_{t}, \boldsymbol{P}_{x}\right)$ be a branching Markov process on the state space S in the sense of [1]. For \boldsymbol{X} define the extinction time by $e_{\partial}=\inf \left\{t ; \boldsymbol{X}_{t}=\partial\right\}$ and the explosion time by $e_{\Delta}=\inf \left\{t ; \boldsymbol{X}_{t}=\Delta\right\}$. ${ }^{2)} \quad$ Let $\left\{\boldsymbol{T}_{t}\right\}_{t \geqslant 0}$ be the semi-group of \boldsymbol{X} acting on $C_{0}(\boldsymbol{S}) .{ }^{3)}$ Set $q(x)=\lim _{t \rightarrow \infty} \boldsymbol{T}_{t} \hat{0}(x)=\boldsymbol{P}_{x}\left(e_{\partial}<\infty\right)$ for $x \in S$, where for each function f on S a function \hat{f} on S is defined as follows; $\hat{f}(\partial)=1$, $\hat{f}(\Delta)=0$ and $\hat{f}(\boldsymbol{x})=f\left(x_{1}\right) \cdots f\left(x_{n}\right)$ if $\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right] \in S^{(n)}, n=1,2, \cdots$. Throughout this article we assume (Asm.) $q(x)$ is a continuous function on S such that $0 \leqslant q(x)<1, x \in S$.

Let us define the family of operators $\left\{\tilde{\boldsymbol{T}}_{t}\right\}_{t \geqslant 0}$ for $\hat{f} \in C_{0}(\boldsymbol{S})$ with a continuous function f on S such that $0 \leqslant f(x)<1$ for $x \in S$.

$$
\begin{equation*}
\tilde{\boldsymbol{T}}_{t} \hat{f}(x)=\frac{1}{1-q(x)}\left\{\boldsymbol{T}_{t}(\overline{q+(1-q) f)}(x)-q(x)\}, \quad x \in S\right. \tag{1}
\end{equation*}
$$

Following [1] $\left\{\tilde{T}_{t}\right\}_{t \geqslant 0}$ is uniquely extended to a branching semi-group acting on $C_{0}(\boldsymbol{S})$, and we also denote the extension by $\left\{\tilde{\boldsymbol{T}}_{t}\right\}_{t \geqslant 0} . \quad\left\{\tilde{T}_{t}\right\}_{t \geqslant 0}$ determines a branching Markov process $\tilde{\boldsymbol{X}}$ on \boldsymbol{S} (cf. [1]). We call the process $\tilde{\boldsymbol{X}}$ the associated (branching Markov) process to \boldsymbol{X}.
2. Results and the proof.

Lemma 1. Let $\tilde{\boldsymbol{X}}$ be the associated process to \boldsymbol{X}, then
(i) \boldsymbol{X} is explosive if and only if $\tilde{\boldsymbol{X}}$ is explosive.
(ii) If $\tilde{\boldsymbol{X}}$ is explosive with probability one, then

[^0]
[^0]: 1) For the terminologies used in our note, refer [3] and [4].
 2) We define $\inf \{\emptyset\}=\infty$.
 3) $C_{0}(S)=\{f$; continuous function on S which vanishes at the infinities of $S\}$, where the infinities consist of Δ and the infinity of the one point compactification of $S^{(n)}, n=1,2, \cdots$.
