29. The Embedding Problem for Operator Groups

By Shinnosuke OHARU

Department of Mathematics, Waseda University, Tokyo

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1976)

By a semigroup in a Banach space X we mean a one-parameter family $\{T_t: t \ge 0\}$ of bounded linear operators on X such that $(s_1) T_0 = I$ (the identity operator on X), $T_{t+s} = T_t T_s$ for $t, s \ge 0$, and (s_2) for $x \in X$, $T_t x$ is strongly measurable for t > 0. A one-parameter family $\{G_t: t \in R\}$ of bounded linear operators on X is said to to be a one-parameter strongly continuous group in X, if $(g_1) \ G_0 = I, G_{t+s} = G_t G_s$ for $t, s \in R$, and (g_2) for $x \in X, G_t x$ is strongly continuous on R with respect to t. Let $\{T_t\}$ be a semigroup in X. We say that the semigroup $\{T_t\}$ can be embedded in a group iff there exists a one-parameter strongly continuous group $\{G_t\}$ in X such that $G_t = T_t$ for $t \ge 0$. A well-known theorem of Hille and Phillips ([1], Theorem 16.3.6.) states that a semigroup $\{T_t\}$ in X can be embedded in a group iff T_{t_0} is injective and surjective for some $t_0 > 0.^{*}$ Our purpose in this paper is to give another version of this theorem in terms of Fredholm operator theory.

Let X and Y be Banach spaces. B(X, Y) will denote the set of all bounded linear operators from X to Y. For basic properties of Fredholm operators, we refer to Schechter [2]. An operator $T \in B(X, Y)$ is said to be *Fredholm* if $(f_1) \alpha(T) \equiv \dim N(T) < \infty$, $(f_2) R(T)$ is closed, and $(f_3)\beta(T) \equiv \dim N(T^*) < \infty$, where N(T), R(T) and T^* denote the null space, the range and the adjoint operator of T, respectively. We denote by $\Phi(X, Y)$ the class of all Fredholm operators from X to Y. For $T \in \Phi(X, Y)$ we define the index i(T) of T by $i(T) = \alpha(T) - \beta(T)$. We shall use the following facts concerning Fredholm operators:

(a) If $T_1 \in \Phi(X, Y)$ and $T_2 \in \Phi(Y, Z)$, then $T_2T_1 \in \Phi(X, Z)$ and $i(T_2T_1) = i(T_1) + i(T_2)$.

(b) Assume that $T_1 \in B(X, Y)$ and $T_2 \in B(Y, Z)$ are such that $T_2T_1 \in \Phi(X, Z)$. If either $\alpha(T_2) \leq \infty$ or $\beta(T_1) \leq \infty$, then $T_1 \in \Phi(X, Y)$ and $T_2 \in \Phi(Y, Z)$.

We now state our theorem:

Theorem. A semigroup $\{T_t\}$ in X can be embedded in a group iff

$$(E_1) \cap_{t>0} N(T_t) = \{0\}; and$$

^{*)} In [1] the semigroup $\{T_t\}$ is supposed to be of class (A), although it is proved without this assumption that the invertibility of some T_{t_0} implies that of every T_t ; hence the theorem holds for every semigroup in X.