28. On a Nonlinear Noncontractive Semigroup

By Naoki YAMADA

Department of Mathematics, Kobe University

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1976)

1. Introduction and Theorem. Let X be a Banach space with norm $\|\cdot\|$. We consider an operator $A: D(A) \subset X \to X$ such that i) $D(A) \ni 0$, A0 = 0 ii) $R(I + \lambda A) = X$ for all $\lambda > 0$ iii) there exists a constant M > 0 such that for all $\lambda > 0$ and $x, y \in X$,

$$||(I+\lambda A)^{-1}x-(I+\lambda A)^{-1}y|| \leq M||x-y||.$$

Let $J_{\lambda} = (I + \lambda A)^{-1}$ be Fréchet differentiable at every $x \in X$. Then $F(\lambda) = J'_{\lambda}[x + \lambda Ax] \in B(X, X)(x \in D(A))$ satisfies the first resolvent equation; $\lambda F(\lambda) - \mu F(\mu) = (\lambda - \mu) F(\mu) F(\lambda)$ (see [3] or [4]). Hence it follows that there exists a linear operator $A'[x]: D(A'[x]) \to X$ such that $F(\lambda) = (I + \lambda A'[x])^{-1}$. Such an operator A is said to be R-defferentiable and A'[x] the R-derivative of A at $x \in D(A)$.

The notion of R-differentiable operators was introduced by M. Iannelli to construct nonlinear noncontractive semigroups. In this note, we shall consider an R-differentiable operator A such that A'[x] satisfies a hyperbolic-type condition. We shall show that the infinitesimal generator of a semigroup associated with A, coincides with A on a subspace of X. Only the result and an outline of its proof are presented here and the details will be published elsewhere. Our result is following

Theorem. Let A be an R-differentiable operator such that:

- (I) A'[x] is a closed linear operator for all $x \in D(A)$,
- (II) there exists a Banach space Y which is densely and continuously embedded in X,
- (S₁) for any finite family $\{x_1, \dots, x_n\} \subset D(A)$,

$$\left\| \prod_{i=1}^n (I + \lambda A'[x_i])^{-1} \right\|_{Y} \leq M,$$

 (S_2) $(I + \lambda A'[x])^{-1}(Y) \subset Y$ for each $x \in D(A)$, and for $\{x_i\}$ stated in (S_1) ,

$$\left\| \prod_{i=1}^n (I + \lambda A'[x_i])^{-1} \right\|_Y \leq K_1,$$

(III) $Y \subset D(A)$, $Y \subset D(A'[x])$ for each $x \in D(A)$, and

$$||A'[x]-A'[y]||_{Y,X} < K_2 ||x-y||.$$

Here K_i , i=1,2 are constants and $\|\cdot\|_X$, $\|\cdot\|_Y$, $\|\cdot\|_Y$, denote the norms in B(X,X), B(Y,Y), B(Y,X) respectively.

Then there exists a unique semigroup $\{G(t)\}_{t\geq 0}$ such that

(a) $G(t)x = \lim_{n\to\infty} (I + (t/n)A)^{-n}x$ for all $t \ge 0$ and $x \in X$,