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Introduction. The integral group ring ZG of a finite abelian
group G is an important example of Gorenstein ring of dimension one
(see [11,[2]). In this case, since ZG is isomorphic to the character
ring R; of G, we say that R; is a Gorenstein ring. In this paper we
show that the character rings of arbitrary finite groups are Gorenstein
rings.

1. Let G be a finite group. Then the character ring R; of G is
a commutative ring and a finitely generated free Z-module. Its unity
element is the principal character of G. As for group rings ([3]), we
see that R s isomorphic to the dual Hom , (R, Z) as Rs~-modules. This
is equivalent to the existence of a nondegenerate symmetric bilinear
form (,): Rg X Re—Z which satisfies the following conditions:

1) (rs,t)=(r,st) for r,s,t € Rg.

2) For each feHom, (R4, Z), there exists an se R, such that
f)=(r,s) for r ¢ Rg.

Such a bilinear form (, ) is given by

(7" 3) =<Ta 8>
for r, s € R;, using the ordinary inner product
1

<t v>—-m eré x)v(),
where g denotes the function defined by a(x)=p(z™") for v € G. In fact,
if (r, 8)=0 for all r € Rg4, then {y3, s>=0 for all irreducible characters y
of G. Hence s=0, which shows that (, ) is nondegenerate. Moreover,
for each f ¢ Hom, (R4, Z), put

8=; J@

where the sum is taken over all y. Then f(y)=(y, s) for all . Since
{x} is a Z-basis of R4, we have f(r)=(r, s) for all r € R;.

Hence R, is a Frobenius Z-algebra in the sense of the definition
given in [3]. It follows from Corollary 8 of [3] that R, has a finite
injective dimension. Thus from the fundamental theorem of [2] we
obtain



