26. On the Irreducible Characters of the Finite Unitary Groups

By Noriaki KAWANAKA Department of Mathematics, Osaka University (Comm. by Kenjiro Shoda, M. J. A., March 12, 1976)

Let k be a finite field, and k_2 the quadratic extension of k. The purpose of the present paper is to announce a theorem which gives a method to construct the irreducible characters of the finite unitary group $U_n(k_2)$ using those of the finite general linear group $GL_n(k_2)$, at least if the characteristic of k is not 2. As an application, we also obtain a parametrization of the irreducible characters of $U_n(k_2)$ which is dual to a known parametrization of the conjugacy classes. Proofs are omitted and will appear elsewhere.

1. Let \mathfrak{G} be the general linear group $GL_n(K)$ over an algebraically closed field K of positive characteristic p. Let k be a finite subfield of K, and $k_m(\subset K)$ the extension of k of degree $m < \infty$. We denote by τ the Frobenius automorphism of K with respect to k. Then τ acts naturally on \mathfrak{G} as an automorphism. Let σ be the automorphism of \mathfrak{G} defined by

$$x^{\sigma} = (({}^{t}x)^{\tau})^{-1} \qquad (x \in \mathfrak{G})$$

where ${}^{t}x$ is the transposed matrix of $x \in \mathfrak{G}$. For a positive integer m, put

$$\mathfrak{G}_{\sigma^m} = \{ x \in G \mid x^{\sigma^m} = x \}.$$

Then we have

$$\mathfrak{G}_{\sigma^m} = \begin{cases} GL_n(k_m) & \text{ if } m \text{ is even,} \\ U_n(k_{2m}) & \text{ if } m \text{ is odd.} \end{cases}$$

In the following, we fix m and put $G = \bigotimes_{\sigma^m}$ and $G_{\sigma} = \bigotimes_{\sigma} = U_n(k_2)$. The restriction of σ to G is an automorphism of the finite group G. In the following, we denote this automorphism also by σ . Let A be the cyclic group of order m generated by the automorphism σ of G. Assume that G and A are embedded in their semi-direct product GA. The following lemma is well known.

Lemma 1. Let H be a finite group, and A a finite cyclic group generated by an automorphism σ of H. If an irreducible complex character χ of H is fixed by σ (i.e. satisfies $\chi(x^{\sigma}) = \chi(x)$ for all $x \in H$), then there exists an irreducible character $\tilde{\chi}$ of the semi-direct product HA whose restriction to H equals χ .

For $x \in G = \mathfrak{G}_{\sigma^m}$, put $N(x) = xx^{\sigma}x^{\sigma^2} \cdots x^{\sigma^{m-1}}$.