25. Putcha's Problem on Maximal Cancellative Subsemigroups

By Takayuki Tamura
University of California, Davis, California, 95616, U. S. A.
(Comm. by Kenjiro Shoda, m. J. A., March 12, 1976)

1. Introduction. Let S be a commutative archimedean semigroup without idempotent ([1], [3], [5]). M. S. Putcha asked the following question in his recent paper [4].

Is every maximal cancellative subsemigroup of S necessarily archimedean?
In this paper the author negatively answers this question by exhibiting a counter example and discusses a further problem. Throughout this paper, Z denotes the set of integers, Z_{+}the set of positive integers and Z_{+}^{0} the set of nonnegative integers. Let S be a commutative semigroup and let a be any element of S. Define ρ_{a} on S by
$x \rho_{a} y$ if and only if $a^{m} x=a^{n} y$ for some $m, n \in Z_{+}$.
Then ρ_{a} is a congruence on S, and if S is a commutative archimedean semigroup without idempotent, then S / ρ_{a} is a group [5], [6]. Let G_{a} $=S / \rho_{a} . \quad G_{a}$ is called the structure group of S with respect to a. A commutative semigroup S is called power joined if, for any $a, b \in S$, there are $m, n \in Z_{+}$such that $a^{m}=b^{n}$.

Putcha's question is affirmative if G_{a} is torsion. It is more strongly stated as follows:

Proposition 1.1. Let S be a commutative archimedean semigroup without idempotent. If a structure group of S is torsion, then every subsemigroup of S is archimedean.

Proof. According to [2], S is power joined if and only if G_{a} is torsion for some $a \in S$, equivalently for all $a \in S$. Every subsemigroup of S is power joined, hence archimedean.

Accordingly Putcha's question is interesting only in the case G_{a} is not torsion.
2. Counter example. Let G be the free abelian group of rank $r \geqq 2$, where r may be infinite, but we assume $2 \leqq r \leqq \boldsymbol{K}_{0}$ for our convenience. However this restriction will be easily removed later. Every element λ of G will be expressed by

$$
\lambda=\left(\lambda_{1}, \cdots, \lambda_{i}, \cdots\right) \quad \text { or } \quad\left(\lambda_{i}\right)
$$

where $\lambda_{i} \in Z$ for all $i \in Z_{+}$, but if $r=\boldsymbol{\aleph}_{0}$, only a finite number of λ_{i} 's are not zero. The operation is defined by $\left(\lambda_{i}\right)+\left(\mu_{i}\right)=\left(\lambda_{i}+\mu_{i}\right)$ and the identity is $\mathbf{0}=(0)$. Define subsemigroups H and E of G by

