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1. Introduction. Let S be a commutative archimedean semi-
group without idempotent ([1], [3], [5]). M.S. Putcha asked the follow-
ing question in his recent paper [4].

Is every maximal cancellative subsemigroup of S
necessarily archimedean ?

In this paper the author negatively answers this question by exhibiting
a counter example and discusses a further problem. Throughout this
paper, Z denotes the set of integers, Z+ the set of positive integers and
Z+ the set of nonnegative integers. Let S be a commutative semigroup
and let a be any element o S. Define p on S by

xpay if and only if ax-=ay orsome m, neZ+.
Then p is a congruence on S, and if S is a commutative archimedean
semigroup without idempotent, then S/pa is a group [5], [6]. Let G
--Sips. G is called the structure group of S with respect to a. A
commutative semigroup S is called power joined if, for any a, b e S,
there are m, n e Z+ such that a b.

Putcha’s question is affirmative if G is torsion. It is more strongly
stated as ollows"

Proposition 1.1. Let S be a commutative archimedean semigroup
without idempotent. If a structure group of S is torsion, then every
subsemigroup of S is archimedean.

Proof. According to [2], S is power joined if and only if G is
torsion or some a e S, equivalently or all a e S. Every subsemigroup
of S is power joined, hence archimedean.

Accordingly Putcha’s question is interesting only in the case G is
not torsion.

2. Counter example. Let G be the free abelian group of rank
r:>2, where r may be infinite, but we assume 2<r=<0 or our con-
venience. However this restriction will be easily removed later. Every
element o G will be expressed by

=(,...,,.,.) or ()
where , e Z or all i e Z/, but if r----0, only a finite number of 2,’s are
not zero. The operation is defined by (,)+ (/,)=(, +/,) and the iden-
tity is 0--(0). Define subsemigroups H and E of G by


