50. On an Explicit Formula for Class. 1 "Whittaker Functions" on GL ${ }_{n}$ over $\mathfrak{\beta}$-adic Fields

By Takuro Shintani
(Comm. by Kunihiko Kodaira, m. J. A., April 12, 1976)

0. "Whittaker functions" on \mathfrak{B}-adic linear groups have been studied by several authors (see e.g. [2] and [3]). In this note, we present an explicit formula for the class-1 "Whittaker functions" on $G L_{n}(k)$, where k is a non archimedean local field.
1. Let k be a finite extension of the p-adic fied \boldsymbol{Q}_{p} and let \mathcal{O} be the ring of integers of k. Choose a generator π of the maximal ideal of \mathcal{O} and denote by q the cardinality of the residue class field of k. Set $G=G L_{n}(k)$ and $K=G L_{n}(\mathcal{O})$. Then K is a maximal compact open subgroup of G. The invariant measure of G is normalized so that the total volume of K is equal to 1 . Denote by $L_{0}(G, K)$ the space of complex valued compactly-supported bi- K-invariant functions on G. Then $L_{0}(G, K)$ is a commutative subalgebra of the group ring $L^{1}(G)$ of G. We denote by N the group of $n \times n$ upper triangular unipotent matrices with entries in k. Choose a character ψ of the additive group of k which is trivial on \mathcal{O} but not trivial on $\pi^{-1} \mathcal{O}$. Denote by the same letter ψ the character of N given by $\psi(x)=\prod_{i=1}^{n-1} \psi\left(x_{i i+1}\right)$, where $x_{i i+1}$ is the $(i, i+1)$ entry of x.

For each algebra homomorphism λ of $L_{0}(G, K)$ into C, it is known that there uniquely exists a function $W_{\lambda}(g)$ on G which satisfies the following conditions (1), (2) and (3).

$$
\begin{equation*}
W_{\lambda}(x g)=\psi(x) W_{\lambda}(g) \quad(\forall x \in N), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{G} W_{\lambda}(g x) \varphi(x) d x=\lambda(\varphi) W_{\lambda}(g) \quad\left(\forall \varphi \in L_{0}(G, K)\right), \tag{2}
\end{equation*}
$$

$$
W_{\lambda}(1)=1 .
$$

The function W_{λ} is said to be the class- 1 "Whittaker function" on G associated with the homomorphism λ of $L_{0}(G, K)$ into C.

For each n-tuple $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ of integers, we denote by π^{f} the diagonal matrix whose i-th diagonal entry is $\pi^{f_{i}}(i=1, \cdots, n)$. Set $w_{\lambda}(f)=W_{\lambda}\left(\pi^{f}\right)$. It is known that $G=\bigcup_{f \in Z^{n}} N \pi^{f} K$ (disjoint union). To evaluate W_{λ} on G, it is sufficient to know $w_{\lambda}(f)$ for all $f \in \boldsymbol{Z}^{n}$, since W_{λ} is right K-invariant and satisfies (1). Since the conductor of ψ is \mathcal{O}, it follows easily from (1) that $w_{2}(f)$ is zero unless $f_{1} \geq f_{2} \geq \cdots \geq f_{n}$.

For $i=1,2, \cdots, n$, let φ_{i} be the characteristic function of the double

