On an Explicit Formula for Class-1 "Whittaker 50. Functions" on GL_n over \mathfrak{P} -adic Fields

By Takuro SHINTANI

(Comm. by Kunihiko KODAIRA, M. J. A., April 12, 1976)

"Whittaker functions" on \$\mathbf{P}-adic linear groups have been 0. studied by several authors (see e.g. [2] and [3]). In this note, we present an explicit formula for the class-1 "Whittaker functions" on $GL_n(k)$, where k is a non archimedean local field.

1. Let k be a finite extension of the p-adic fied Q_p and let \mathcal{O} be the ring of integers of k. Choose a generator π of the maximal ideal of \mathcal{O} and denote by q the cardinality of the residue class field of k. Set $G = GL_n(k)$ and $K = GL_n(\mathcal{O})$. Then K is a maximal compact open subgroup of G. The invariant measure of G is normalized so that the total volume of K is equal to 1. Denote by $L_0(G, K)$ the space of complex valued compactly-supported bi-K-invariant functions on G. Then $L_0(G, K)$ is a commutative subalgebra of the group ring $L^1(G)$ of G. We denote by N the group of $n \times n$ upper triangular unipotent matrices with entries in k. Choose a character ψ of the additive group of k which is trivial on \mathcal{O} but not trivial on $\pi^{-1}\mathcal{O}$. Denote by the same letter ψ the character of N given by $\psi(x) = \prod_{i=1}^{n-1} \psi(x_{ii+1})$, where x_{ii+1} is the (i, i+1) entry of x.

For each algebra homomorphism λ of $L_0(G, K)$ into C, it is known that there uniquely exists a function $W_{\lambda}(g)$ on G which satisfies the following conditions (1), (2) and (3).

- $W_{\lambda}(xg) = \psi(x)W_{\lambda}(g)$ $(\forall x \in N),$ (1)
- $\int_{G} W_{\lambda}(gx)\varphi(x)dx = \lambda(\varphi)W_{\lambda}(g) \qquad (\forall x \in N),$ $(\forall x \in N), \qquad (\forall \varphi \in L_{0}(G, K)),$ (2)
- (3) $W_{2}(1) = 1.$

The function W_{λ} is said to be the class-1 "Whittaker function" on G associated with the homomorphism λ of $L_0(G, K)$ into C.

For each *n*-tuple $f = (f_1, f_2, \dots, f_n)$ of integers, we denote by π^f the diagonal matrix whose *i*-th diagonal entry is π^{f_i} $(i=1, \dots, n)$. Set $w_{\lambda}(f) = W_{\lambda}(\pi^{f})$. It is known that $G = \bigcup_{f \in \mathbb{Z}^{n}} N\pi^{f}K$ (disjoint union). То evaluate W_{λ} on G, it is sufficient to know $w_{\lambda}(f)$ for all $f \in \mathbb{Z}^n$, since W_{λ} is right K-invariant and satisfies (1). Since the conductor of ψ is \mathcal{O} , it follows easily from (1) that $w_i(f)$ is zero unless $f_1 \ge f_2 \ge \cdots \ge f_n$.

For $i=1, 2, \dots, n$, let φ_i be the characteristic function of the double