49. Some Results on Additive Number Theory. I

By Minoru Tanaka
Department of Mathematics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo
(Comm. by Kunihiko Kodaira, m. J. A., April 12, 1976)

In his previous papers [2]-[5], the author gave some generalizations of the theorem of Erdös and Kac in [1]. In this note we shall give some theorems on additive number theory which are obtainable by similar methods as in the above papers. The detailed proofs will be given elsewhere.

Let k be an integer >1; let $l_{i}(i=1, \cdots, k)$ be positive integers, and put $l_{0}=l_{1}+\cdots+l_{k}$.

Theorem 1. Let $P_{i j}\left(i=1, \cdots, k ; j=1, \cdots, l_{i}\right)$ be sets, each consisting of prime numbers, subject to the following conditions:
$\left(\mathrm{C}_{1}\right)$ For each $i=1, \cdots, k$, the sets $P_{i j}\left(j=1, \cdots, l_{i}\right)$ are pairwise disjoint;
$\left(\mathrm{C}_{2}\right)$ As $x \rightarrow \infty$,

$$
\sum_{p \leq x, p \in P_{i j}} \frac{1}{p}=\lambda_{i j} \log \log x+o(\sqrt{\log \log x})
$$

with positive constants $\lambda_{i j}$ for $i=1, \cdots, k ; j=1, \cdots, l_{i}$. (The sets $P_{i j}$ with distinct i 's need not be disjoint, and $P_{i 1} \cup \cdots \cup P_{i l_{i}}$ may not contain all primes.)

For a positive integer n, we denote by $\omega_{i j}(n)$ the number of distinct prime factors of n belonging to the set $P_{i j}$.

Let E be a Jordan-measurable set, bounded or unbounded, in the Euclidean space $R^{l_{0}}$ of l_{0} dimensions. For sufficiently large integer N, let $A(N ; E)$ denote the number of representations of N as the sum of k positive integers: $N=n_{1}+\cdots+n_{k}$ such that the point $\left(x_{11}, \cdots, x_{11_{1}}\right.$, $\cdots, x_{k 1}, \cdots, x_{k l_{k}}$) belongs to the set E, where

$$
\begin{equation*}
x_{i j}=\frac{\omega_{i j}\left(n_{i}\right)-\lambda_{i j} \log \log N}{\sqrt{\lambda_{i j} \log \log N}} \tag{1}
\end{equation*}
$$

for $i=1, \cdots, k ; j=1, \cdots, l_{i}$. Then, as $N \rightarrow \infty$, we have (2) $A(N ; E) \sim \frac{N^{k-1}}{(k-1)!}(2 \pi)^{-\left(l_{0} / 2\right)} \int_{E} \exp \left(-\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{l_{i}} x_{i j}^{2}\right) d x_{11} \cdots d x_{k l_{k}}$.

Theorem 2. Let the polynomials $f_{i j}(\xi)\left(i=1, \cdots, k ; j=1, \cdots, l_{i}\right)$ of positive degree be subject to the following conditions:
$\left(\mathrm{C}_{1}\right)$ Each $f_{i j}(\xi)$ has rational integral coefficients, the leading coefficient being positive;

