48. On Symmetric Structure of a Group

By Noriaki UMAYA

Department of Mathematics, Faculty of General Education, Kobe University

(Comm. by Kenjiro SHODA, M. J. A., April 12, 1976)

1. Introduction. Let A be a set and S a mapping of A into the symmetric group on A. Denote the image of $a (\in A)$ under S by S_a or S[a] and the image of $x(\in A)$ under S_a by xS_a . Then S is called a symmetric structure of A if the following conditions are satisfied:

(i) $aS_a = a$, (ii) $S_a^2 = I$ (the identity), (iii) $S[bS_a] = S_a S_b S_a$. A set with a symmetric structure is called a symmetric set. A symmetric set A is called *effective* if $a \neq b$ implies $S_a \neq S_b$. Then group generated by $\{S_a S_b | a, b \in A\}$ is called the group of displacements and is denoted by G(A). A symmetric structure of a finite set has been studied in [1] and [2].

Now let A be a group. Then A has symmetric structure S defined by $xS_a = ax^{-1}a$. The purpose of this note is to study the structure of G(A) for a given group A, and we shall determine it when the center Z(A) of A is trivial.

I am indebted to Professor Nagao for his help and encouragement during the preparation of this note.

2. Group of displacements. In this section we assume that A is a group and S is a symmetric structure of A defined above.

Proposition 1. A is effective if and only if there is no involution in the center of A.

Proof. Let Z(A) be the center of A, and assume that Z(A) contains an involution t. Then $xS_{at} = (at)x^{-1}(at) = ax^{-1}a = xS_a$. Therefore A is not effective.

Conversely, assume that A is not effective, then there exist distinct two elements a and b in A such that $S_a = S_b$. Therefore, for any element x in A,

(1)
$$ax^{-1}a = bx^{-1}b$$
.
Replacing a with a (the unit element) and a we h

Replacing x with e (the unit element) and a, we have

 $(2) a^2 = b^2$

 $(3) a=ba^{-1}b.$

Then $b^{-1}a = (ab^{-1})^{-1}$ by (2), $(ab^{-1})^2 = e$ by (3) and $(b^{-1}a)x^{-1}(ab^{-1}) = x^{-1}$ for any x in A. Hence, $ab^{-1} \in Z(A)$ and $(ab^{-1})^2 = e$. Thus Z(A) contains an involution.

Let L_a and R_a be permutations on A such that

$$L_a: x \rightarrow ax$$
,