48. On Symmetric Structure of a Group

By Noriaki Umaya
Department of Mathematics, Faculty of General Education, Kobe University

(Comm. by Kenjiro Shoda, m. J. A., April 12, 1976)

1. Introduction. Let A be a set and S a mapping of A into the symmetric group on A. Denote the image of $a(\in A)$ under S by S_{a} or $S[a]$ and the image of $x(\in A)$ under S_{a} by $x S_{a}$. Then S is called a symmetric structure of A if the following conditions are satisfied:
(i) $a S_{a}=a$, (ii) $S_{a}^{2}=I$ (the identity), (iii) $S\left[b S_{a}\right]=S_{a} S_{b} S_{a}$. A set with a symmetric structure is called a symmetric set. A symmetric set A is called effective if $a \neq b$ implies $S_{a} \neq S_{b}$. Then group generated by $\left\{S_{a} S_{b} \mid a, b \in A\right\}$ is called the group of displacements and is denoted by $G(A)$. A symmetric structure of a finite set has been studied in [1] and [2].

Now let A be a group. Then A has symmetric structure S defined by $x S_{a}=a x^{-1} a$. The purpose of this note is to study the structure of $G(A)$ for a given group A, and we shall determine it when the center $Z(A)$ of A is trivial.

I am indebted to Professor Nagao for his help and encouragement during the preparation of this note.
2. Group of displacements. In this section we assume that A is a group and S is a symmetric structure of A defined above.

Proposition 1. A is effective if and only if there is no involution in the center of A.

Proof. Let $Z(A)$ be the center of A, and assume that $Z(A)$ contains an involution t. Then $x S_{a t}=(a t) x^{-1}(a t)=a x^{-1} a=x S_{a}$. Therefore A is not effective.

Conversely, assume that A is not effective, then there exist distinct two elements a and b in A such that $S_{a}=S_{b}$. Therefore, for any element x in A,
(1)

$$
a x^{-1} a=b x^{-1} b .
$$

Replacing x with e (the unit element) and a, we have

$$
\begin{gather*}
a^{2}=b^{2} \tag{2}\\
a=b a^{-1} b .
\end{gather*}
$$

Then $b^{-1} a=\left(a b^{-1}\right)^{-1}$ by (2), $\left(a b^{-1}\right)^{2}=e$ by (3) and $\left(b^{-1} a\right) x^{-1}\left(a b^{-1}\right)=x^{-1}$ for any x in A. Hence, $a b^{-1} \in Z(A)$ and $\left(a b^{-1}\right)^{2}=e$. Thus $Z(A)$ contains an involution.

Let L_{a} and R_{a} be permutations on A such that

$$
L_{a}: x \rightarrow a x
$$

