47. An Alternate Proof of a Transfer Theorem without using Transfer

By Tomoyuki Yoshida
(Comm. by Kenjiro Shoda, M. J. A., April 12, 1976)

In the paper [1] by the same author, he proved
Theorem A. If a Sylow p-subgroup P of a finite group G has no quotient group isomorphic to the wreath product $Z_{p} \backslash Z_{p}$, where Z_{p} is the cyclic group of order p, then $P \cap G^{\prime}=P \cap N_{G}(P)^{\prime}$.

The purpose of this paper is to give a primitive proof of a particular case of this theorem. Namely, we shall prove

Theorem B. If a Sylow 2-subgroup P of a finite group G has no quotient group isomorphic to the dihedral group D_{8} of order 8 , then $P \cap G^{2} G^{\prime}=P \cap N^{2} N^{\prime}$, where $N=N_{G}(P)$. In particular, if G has no subgroup of index 2, then so does N.

Most of the notation is standard. Let G be a finite group. Then G^{\prime} denotes the commutator group of G. For $X \subseteq G,\langle X\rangle$ is the subgroup generated by X. We set $G^{2} G^{\prime}=\left\langle g^{2}, G^{\prime} \mid g \in G\right\rangle$. We write $H \triangleleft G$ if H is a normal subgroup of G. For subgroups H, K of G, the notation $K \backslash H$ denotes the set $\{K h \mid h \in H\}$. Clearly, every element of H induces a permutation on $K \backslash H$. We write $H<G$ if H is a proper subgroup of G.

The following lemma is essential to the proof of Theorem B.
Lemma. Let P be a 2-group, $K<S<P$ and $x \in P$. Assume the following:
(a) $|S: K|=2$;
(b) For any $u \in P,\left\langle x^{2}\right\rangle^{u} \cap S \subseteq K$;
(c) The element x acts on the set $K \backslash P$ as an odd permutation. Then P has a quotient group isomorphic to D_{8}.

Proof. We shall argue by induction on $|P: S|$. Let R be a subgroup of P such that $|R: S|=2$. Suppose $K \triangleleft R$. Since x acts on $K \backslash P$ as an odd permutation, we have that there is $u \in P$ such that x acts as an odd permutation on the set $K \backslash R u\langle x\rangle$. Replacing x with $u x u^{-1}$, we may assume that $u=1$. If x fixes an element of $K \backslash R\langle x\rangle$, then x acts trivially on $K \backslash R\langle x\rangle$, as $K \triangleleft R$, a contradiction. Thus x acts semiregularly on $K \backslash R\langle x\rangle$, and so the number of the $\langle x\rangle$-orbits of $K \backslash R\langle x\rangle$ is 1 or 3 . It follows easily from $K \triangleleft R$ that $K \backslash R\langle x\rangle=K \backslash K\langle x\rangle$. Thus $|\langle x\rangle \cap R:\langle x\rangle \cap K|=4$. This means that $x^{j} \in S-K$ for some even j. This contradicts the assumption of this lemma. Hence we proved

