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§ 1. Introduction. In this paper we consider the &-well-posed-
ness for the Cauchy problem of the first order system:
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where A,(z, t) and B(z, t) are (m, m) matrices whose elements belong to
the class B(2) (in the sense of L. Schwartz [5]).

We suppose that A(x,t,&8)=> ', A,(x, t)&; is not diagonalizable.
Such a case has been treated by V. M. Petkov with the method of asymp-
totic expansions ([6], [7]).

Here we shall approach this problem in a different viewpoint from
his and propose a more concrete condition which is necessary and suf-
ficient for the £-well-posedness of (1.1). Our proof is much due to, so-
called, the method of energy estimates (see S. Mizohata [2], S. Mizohata
and Y. Ohya [3], [4]). The forthcoming paper will give the detailed
proofs.

§2. Levi’s condition and an energy estimate. As indicated in
§ 1, throughout this paper we assume the following:

(2.1) The multiplicities of the characteristic roots are constant and at
most double, more precisely,

det (eI —A(x, ¢; =[] (c—2(x, ¢; &)’ AL =22, 15 6).
(2.2) The roots A(x,t;&) are real and distinet for (x,t;&) e
X (RL\{OD), (¢=1,2, ..., m—s).
2.3) Fori=1,2,...,s, rank (4;(x,t; &)I—A(z, t; &))=m—1, independ-
ently of (x,t; &).
Proposition 2.1. Suppose (2.1) and (2.3), then there exists a
(m,m) matriz N(xz,t; &) which satisfies

(i) N(x,t; OA@,t;8)=D(x,t; &N(x,t; §),
where



