[Vol. 52,

77. On the System of Pfaffian Equations of Briot-Bouquet Type

By Kiyosi KINOSITA Tokyo Electrical Engineering College

(Communicated by Kunihiko KODAIRA, M. J. A., June 8, 1976)

§1. Introduction. In this paper we shall extend some wellknown results on the system of ordinary differential equations of Briot-Bouquet type to the system of Pfaffian equations. By a system of Pfaffian equations of Briot-Bouquet type we mean a completely integrable system of Pfaffian equations

$$du_i = \sum_{k=1}^n \frac{f^{ik}(u_1, \cdots, u_m, x_1, \cdots, x_n)}{x_k} dx_k, \qquad i=1, \cdots, m,$$

or

(1)
$$x_k \frac{\partial u_i}{\partial x_k} = f^{ik}(u, x), \qquad i=1, \dots, m; k=1, \dots, n,$$

where the f^{ik} are functions holomorphic at the origin $u_1 = \cdots = u_m$ = $x_1 = \cdots = x_n = 0$ and vanishing there. By the use of the usual multiindex notation: $\alpha = (\alpha_1, \cdots, \alpha_m)$, $\beta = (\beta_1, \cdots, \beta_n)$, the Taylor expansions of the f^{ik} are expressible as

$$f^{ik}(u, x) = \sum_{\mu=1}^{m} a_{i\mu}^{k} u_{\mu} + \sum_{\nu=1}^{n} a_{\nu}^{ik} x_{\nu} + \sum_{|\alpha|+|\beta|\geq 2} a_{\alpha\beta}^{ik} u^{\alpha} x^{\beta}.$$

By denoting A_k the matrix formed by the coefficients of u_1, \ldots, u_m in the developments of f^{1k}, \ldots, f^{mk} , let $\lambda_1^k, \ldots, \lambda_m^k$ be the eigenvalues of A_k .

The complete integrability condition for (1) can be written as follows:

(2)
$$\sum_{\mu=1}^{m} \frac{\partial f^{il}}{\partial u_{\mu}} f^{\mu k} + x_{k} \frac{\partial f^{il}}{\partial x_{k}} = \sum_{\mu=1}^{m} \frac{\partial f^{ik}}{\partial u_{\mu}} f^{\mu l} + x_{l} \frac{\partial f^{ik}}{\partial x_{l}}.$$

§2. Formal integration.

Theorem 2.1. Suppose that

(i) All the A_k , $k=1, \dots, n$, are similar to diagonal matrices;

(ii) For any system of non-negative integers $(\alpha_1, \dots, \alpha_m, B)$, there exists an index K, $1 \le K \le n$, such that

$$\lambda_i^{\scriptscriptstyle K}\!
eq \sum_{\mu=1}^m lpha_\mu \lambda_\mu^{\scriptscriptstyle K}\! +\!B, \qquad \qquad i\!=\!1,\,\cdots,m.$$

Then there exists a formal transformation of the form

(3)
$$u_{i} = \sum_{\mu=1}^{m} p_{i\mu} v_{\mu} + \sum_{\nu=1}^{n} p_{\nu}^{i} x_{\nu} + \sum_{|\alpha|+|\beta|\geq 2} p_{\alpha\beta}^{i} v^{\alpha} x^{\beta},$$

which transforms the system (1) into the system