76. On Some Additive Divisor Problems. II

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., June 8, 1976)
§ 1. In our previous paper [4] we have given a very simple proof of the asymptotic formula (as $N \rightarrow \infty$)

$$
\begin{aligned}
\mathrm{D}_{k}(N ; a) & =\sum_{n \leq N} \mathrm{~d}_{2}(n+a) \mathrm{d}_{k}(n) \\
& =S_{k}(\alpha) N(\log N)^{k}+O\left(N(\log N)^{k-1} \log \log N\right),
\end{aligned}
$$

where a is a fixed integer, $\mathrm{d}_{k}(n)$ the coefficient of $\zeta(s)^{k}, k \geqq 3$ arbitrary. The problem for general k has been firstly treated by Linnik in his book [3]. There it is indicated also that his method enables us to deduce even an expansion with an error-term $O\left(N(\log N)^{\varepsilon}\right), \varepsilon>0$ being arbitrarily small (see also Bredikhin [1]). But it seems that neither Linnik nor Bredikhin have been able to eliminate this error-term.

Now the purpose of this note is to announce
Theorem. We have the asymptotic expansion, for arbitrary k,

$$
\mathrm{D}_{k}(N ; a)=N \sum_{j=0}^{k} f_{k}^{(j)}(a)(\log N)^{j}+O\left(N(\log N)^{-1+\iota}\right)
$$

The coefficients can be calculated, but at the cost of big labour. The result should be compared with Estermann's asymptotic expansion for the case of $k=2$ ([2]).
§2. We indicate very briefly the main steps of our proof, whose detailed exposition will appear elsewhere.

Now by an obvious reason it is sufficient to consider the case of $a=1$. And we prove that, denoting by (P) the set of primes in the interval $\left(N^{3 / 4}, N(\log N)^{-4}\right)$ with sufficiently large A, we have
(*)

$$
\mathrm{D}_{k}(N ; 1)-\mathrm{D}_{k}(N ; p)=O\left(N(\log N)^{-1+\varepsilon}\right),
$$

uniformly for all $p \in(P)$. To do this we divide $\mathrm{D}_{k}(N ; a)$ into two parts. Let $z_{1}=\exp \left((\log N)^{\varepsilon_{1}}\right), \varepsilon_{1}=\varepsilon /(3 k+1), z_{2}=\exp \left((\log N)(\log \log N)^{-2}\right)$, and further let (I), (II) be two sets of integers $\leqq N$ such that $n \in$ (I) has no prime factors in the interval $\left(z_{1}, z_{2}\right)$ and (II) is the complementary set of (I). And we put, a being 1 or $p \in(P)$,

$$
\mathrm{D}_{k}(N ; a)=\sum_{n \in(\mathbb{I})}+\sum_{n \in(\mathrm{II})}=\mathrm{D}_{k}^{(1)}(N ; a)+\mathrm{D}_{k}^{(2)}(N ; a) .
$$

By a direct application of the dispersion method [3] we can show that
Lemma 1. We have, uniformly for all $p \in(P)$,

$$
\mathrm{D}_{k}^{(2)}(N ; 1)-\mathrm{D}_{k}^{(2)}(N ; p)=O\left(N(\log N)^{-2}\right) .
$$

§3. As for $\mathrm{D}_{k}^{(1)}(N ; a)$ we first define another two sets of integers

