73. Group Rings of Metacyclic p-Groups

By Shigeo Koshitani
Department of Mathematics, Tokyo University of Education
(Communicated by Kenjiro Shoda, M. J. A., June 8, 1976)

Let K be a field with characteristic $p>0, P$ a finite p-group and $K P$ a group ring of P over K. Recently W. Müller [6] proved that every left ideal of $K P$ is generated by at most 2 elements if $p=2$ and P is either a dihedral group, a semi-dihedral group or a generalized quaternion group of order 2^{n+1}. These groups are metacyclic 2 -groups. So in this paper we shall generalize the above result as follows: If P is a metacyclic p-group containing a cyclic normal subgroup Q and with a cyclic factor group P / Q, then every left (right) ideal of $K P$ is generated by at most $|P / Q|$ elements. Further we shall show that there exists a metacyclic p-group P such that $K P$ has a left (right) ideal whose minimal generators consist of $|P / Q|$ elements. By using our technique if P is a semi-direct product of Q by P / Q it is proved a relation among the nilpotency indices of the radicals of $K P, K Q$ and $K(P / Q)$ which is similar in the case of a direct product of groups.

Let P be a metacyclic p-group containing a cyclic normal subgroup $Q=[b]$ of order $p^{n}(n \geqq 1)$ and with a cyclic factor group $P / Q=[a Q]$ of order p^{m} (cf. [1, §47]). Then there is an integer r such that $a b a^{-1}=b^{r}$. Since $a^{p^{m}} \in Q, r^{p^{m}} \equiv 1\left(\bmod p^{n}\right)$. Hence
(*) $\quad b a^{i}=a^{i} b^{r^{p^{m}-t}}, \quad$ for $i=0, \cdots, p^{m}-1$.
We may put $a^{p^{m}}=b^{p^{k}}$, $(0 \leqq k \leqq n)$. Put $B=K P, x=a-1, y=b-1$ in B and $[s, t]=x^{p^{m-1-s}} y^{p n-1-t}$, for $s=0, \cdots, p^{m}-1 ; t=0, \cdots, p^{n}-1$. Then $C=\left\{[s, t] \mid 0 \leqq s \leqq p^{m}-1,0 \leqq t \leqq p^{n}-1\right\}$ forms a K-basis of B. Next we make C a totally ordered set by introducing in the following way: $[s, t]<\left[s^{\prime}, t^{\prime}\right]$ if and only if $t<t^{\prime}$, or $t=t^{\prime}$ and $s<s^{\prime}$. Since each $u \in B \backslash\{0\}$ can be expressed uniquely in the form $u=\sum_{i=1}^{d} k_{i u} c_{i u}$, where $k_{i u} \in K \backslash\{0\}$, $c_{i u} \in C$, for $i=1, \cdots, d$ and $c_{1 u}<c_{2 u}<\cdots<c_{d u}$, we can define a map $h: B \backslash\{0\} \rightarrow C$ such that $h(u)=c_{d u}$. Put $\binom{i}{j}=0$ if $i<j$ or $j<0$.

At first we shall prove the following
Lemma. (a) $x[s, t]=[s-1, t]$, for $s=1, \cdots, p^{m}-1 ; t=0, \cdots, p^{n}-1$.
(b) $x[0, t]=0$, for $t=0, \cdots, p^{k}-1$. $x[0, t]=\left[p^{m}-1, t-p^{k}\right]$, for $t=$ $p^{k}, p^{k}+1, \cdots, p^{n}-1$, if $k<n$.
(c) $y\left[p^{m}-1, t\right]=\left[p^{m}-1, t-1\right]$, for $t=1, \cdots, p^{n}-1 . y\left[p^{m}-1,0\right]=0$.
(d) $h(y[s, t])=[s, t-1]$, for $s=0, \cdots, p^{m}-1 ; t=1, \cdots, p^{n}-1$. $y[s, 0]=0$, for $s=0, \cdots, p^{m}-1$.

