99. Some Results on Additive Number Theory. II

By Minoru TANAKA

Department of Mathematics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 13, 1976)

In this note we outline the proof of the

Theorem. Let k be an integer >1, and let $\alpha_i < \beta_i$ $(i=1, \dots, k)$. For sufficiently large positive integer N, let A(N) denote the number of representations of N as the sum of k positive integers: $N=n_1+\cdots$ $+n_k$ such that

log log $N + \alpha_i \sqrt{\log \log N} \le \omega(n_i) \le \log \log N + \beta_i \sqrt{\log \log N}$ $(i=1, \dots, k)$ simultaneously, where $\omega(n_i)$ denotes the number of distinct prime factors of n_i . Then, as $N \to \infty$, we have

$$A(N) \sim \frac{N^{k-1}}{(k-1)!} (2\pi)^{-k/2} \prod_{i=1}^{k} \int_{\alpha_i}^{\beta_i} e^{-x^{2/2}} dx.$$

This theorem was announced as Theorem 3 in [2] without proof. Our proof is elementary and makes no use of any limit theorems in probability theory.

Lemma 1. Let a_i (i=1, ..., k) and b be positive integers such that $d=(a_1, ..., a_k)$ divides b. Let S denote the number of solutions of the Diophantine equation $a_1x_1+...+a_kx_k=b$ in positive integers, then we have $|S-db^{k-1}/[(k-1)! a_1...a_k]| < Cb^{k-2}$, where C is a positive number dependent only on k and independent of a_i and b.

We define the set P_N consisting of primes as $P_N = \{p : e^{(\log \log N)^2} and put <math>y(N) = \sum_{p \in P_N} 1/p$. Then we have

(1) $y(N) = \log \log N + O(\log \log \log N).$

We denote by $\omega_N(n)$ the number of primes p such that $p|n, p \in P_N$. For any positive integer t, we define the set M(t) consisting of positive integers as $M(t) = M(N; t) = \{m: m \text{ is squarefree}; m \text{ has } t \text{ prime factors}; p|m \Rightarrow p \in P_N\}$. We put for convenience $M(0) = \{1\}$.

For any k positive integers t_i , we denote by $F(N; t_1, \dots, t_k)$ the number of representations of N as the sum of k positive integers: $N = n_1 + \dots + n_k$ such that $\omega_N(n_i) = t_i$ simultaneously.

For any k positive integers $m_i \in M(t_i)$ with some positive integers t_i , we denote by $G(N; m_1, \dots, m_k)$ the number of representations of N as the sum of k positive integers: $N = n_1 + \dots + n_k$ such that $\prod_{p \mid n_i, p \in P_N} p = m_i$ simultaneously. We have

$$F(N; t_1, \cdots, t_k) = \sum_{m_1 \in \mathcal{M}(t_1)} \cdots \sum_{m_k \in \mathcal{M}(t_k)} G(N; m_1, \cdots, m_k).$$