99. Some Results on Additive Number Theory. II

By Minoru Tanaka
Department of Mathematics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 13, 1976)

In this note we outline the proof of the
Theorem. Let k be an integer >1, and let $\alpha_{i}<\beta_{i}(i=1, \cdots, k)$. For sufficiently large positive integer N, let $A(N)$ denote the number of representations of N as the sum of k positive integers: $N=n_{1}+\cdots$ $+n_{k}$ such that
$\log \log N+\alpha_{i} \sqrt{\log \log N}<\omega\left(n_{i}\right)<\log \log N+\beta_{i} \sqrt{\log \log N} \quad(i=1, \cdots, k)$ simultaneously, where $\omega\left(n_{i}\right)$ denotes the number of distinct prime factors of n_{i}. Then, as $N \rightarrow \infty$, we have

$$
A(N) \sim \frac{N^{k-1}}{(k-1)!}(2 \pi)^{-k / 2} \prod_{i=1}^{k} \int_{\alpha_{i}}^{\beta_{i}} e^{-x^{2 / 2}} d x .
$$

This theorem was announced as Theorem 3 in [2] without proof. Our proof is elementary and makes no use of any limit theorems in probability theory.

Lemma 1. Let $a_{i}(i=1, \cdots, k)$ and b be positive integers such that $d=\left(a_{1}, \cdots, a_{k}\right)$ divides b. Let S denote the number of solutions of the Diophantine equation $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ in positive integers, then we have $\left|S-d b^{k-1} /\left[(k-1)!a_{1} \cdots a_{k}\right]\right|<C b^{k-2}$, where C is a positive number dependent only on k and independent of a_{i} and b.

We define the set P_{N} consisting of primes as $P_{N}=\left\{p: e^{(\log \log N)^{2}}<p\right.$ $\left.<N^{(\log \log N)-2}\right\}$ and put $y(N)=\sum_{p \in P_{N}} 1 / p$. Then we have

$$
\begin{equation*}
y(N)=\log \log N+O(\log \log \log N) \tag{1}
\end{equation*}
$$

We denote by $\omega_{N}(n)$ the number of primes p such that $p \mid n, p \in P_{N}$.
For any positive integer t, we define the set $M(t)$ consisting of positive integers as $M(t)=M(N ; t)=\{m: m$ is squarefree; m has t prime factors; $\left.p \mid m \Rightarrow p \in P_{N}\right\}$. We put for convenience $M(0)=\{1\}$.

For any k positive integers t_{i}, we denote by $F\left(N ; t_{1}, \cdots, t_{k}\right)$ the number of representations of N as the sum of k positive integers: N $=n_{1}+\cdots+n_{k}$ such that $\omega_{N}\left(n_{i}\right)=t_{i}$ simultaneously.

For any k positive integers $m_{i} \in M\left(t_{i}\right)$ with some positive integers t_{i}, we denote by $G\left(N ; m_{1}, \cdots, m_{k}\right)$ the number of representations of N as the sum of k positive integers: $N=n_{1}+\cdots+n_{k}$ such that $\prod_{p \mid n_{i}, p \in P_{N}} p$ $=m_{i}$ simultaneously. We have

$$
F\left(N ; t_{1}, \cdots, t_{k}\right)=\sum_{m_{1} \in M\left(t_{1}\right)} \cdots \sum_{m_{k} \in M\left(t_{k}\right)} G\left(N ; m_{1}, \cdots, m_{k}\right) .
$$

