
338 Proc. Japan Acad., 52 (1976) [Vol. 52,

92. Random Functions in Fourier Restriction Algebras
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We denote by A(R) the Fourier lgebra on the real line R. The
norm of/ in A(R) is

hll= h()l dr.

For a closed subset E of R, set
A(E)= {g E g e A(R)},

Ilflla =in {llgllaz g e A(R), glE=f} (f e A(E)).
Let E {x" mm<m+n} (k= 1, 2, ..) be pairwise disjoint

finite subsets of R each of which consists of n points, where m 0 and

m+n=nz+... +n_ (k2). Supposex0 e =aE and {E} converges
to xo. Put

E=EU {x0}.
Let {e} be a sequence of complex numbers and let {e} be the Rademaeher
sequence. We define a random function f=f on E by

f()=e(w)c (k= 1, 2, ..., mm<m+n)
f(x0) =0.

We investigate the condition for the function f to belong to A(E).
By using Rudin-Shapiro polynomials, we see that if each E is an
arithmetic progression nd {c} does not converge to zero, then there
exists a unction f A(E). The following Theorem asserts that it holds
almost surely. This is bsed on the same idea as Paley-Zygmund theo-
rem, but we use the estimate of the L-norm of random trigonometric

polynomials which is due to Uchiyama.
Theorem. Suppose each E is an arithmetic progression. If

{c} does not converge to zero, then f A(E) a.s.
Proof. Put

x =a+mb (k= 1, 2, ..., mm<m+n).
For each k, let v be the function in L() such that

(x)=a(x--{a+(m+p)b}) (x e R),
where p=[n/2], a=pb and

(y)=max (1--lYl, 0)(yeR)
If h e L() and =f on E, then


