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1. The simply connected Heisenberg group G of n-th order con-
gists of elements g(x,y,2) (¢,y e R",zc R) with multiplication law

9(a,b,0)-9x,y,2)=9(x+a,y+b,z+c+<{a, ¥>), where <a, y>=ﬁ; @Y.

In this paper we state a Paley-Wiener type theorem for the group
G by the same method as in [3]. Let N and A be the subgroups of ele-
ments n=g(0, b, ¢) and a=g(a, 0, 0), respectively. Then G=N-4 is a
semidirect product. On the set N of not necessarily unitary characters
of N co-adjoint action of A is defined by a* . y(n) =x(ana™), (@ € A,y € N).
Every irreducible unitary representation of infinite dimension is re-
alized up to equivalence in L*(R?, dx) cf. [1],[2]: for 10,
(1) Tip(9) =€ De’ 2+ 9(x +a), for g=g(a, b, 0),
which is induced from a unitary character y=(y,2) of N such that
x(9(0, b, ) =exp ({gt, b>+1c), (ue ¥ —1-R*,2e ¥/ —=1.R). Let C be the
space of functions ¢ on R" with finite seminorms || - ||; for any ¢ ¢ R*,
where

loli=([, exp <t lob-lo@ran)",  (el=(ao.

In the space (C,|| - ;) the formula (1) gives a representation 9,. Es-
pecially we have || T%- ¢, < C*(2, 9) |¢l2¢,0» (¢ € C), with constants C*(¢, 9)
and z*(t, 9) independent of ¢. From easy argument of the existence of
invariant bilinear forms follows

Proposition. (i) A continuous linear operator commuting with
all T% (g € G) is a scalar multiple of the identity. (ii) Representation
9D, extends to a unitary one if and only if so is y (cf. [4]).

2. Let Q,,,, be a compact set in G of the form

(9@, y,2); |2 S, Y|SBy 121758, §=1- - -m}.

We assign auxiliary functions to Q=@Q,,;,, *(t; Q) =t+28|Rei|, and
Cx(t, Q=exp [{B, |Rep>+7|Rea|+ 27|z (t; Q)] )]

Lemma. If the support of a function fe L*(G) is contained in the

compact set Q, the Fourier transform of f: T§=L f(9)T*dg, converges

strongly in C for every y e N and it holds

(2) T2, < C* 5 @ || flzall@llxee; 0 (t e R™).
The Plancherel formula takes the following form:



