90. Paley-Wiener Type Theorem for the Heisenberg Groups

By Shoichi Ando
Department of Mathematics, Kyoto University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 13, 1976)

1. The simply connected Heisenberg group G of n-th order consists of elements $g(x, y, z)\left(x, y \in R^{n}, z \in R\right)$ with multiplication law $g(a, b, c) \cdot g(x, y, z)=g(x+a, y+b, z+c+\langle a, y\rangle)$, where $\langle a, y\rangle=\sum_{i=1}^{n} a_{i} y_{i}$.

In this paper we state a Paley-Wiener type theorem for the group G by the same method as in [3]. Let N and A be the subgroups of elements $n=g(0, b, c)$ and $a=g(a, 0,0)$, respectively. Then $G=N \cdot A$ is a semidirect product. On the set \hat{N} of not necessarily unitary characters of N co-adjoint action of A is defined by $a^{*} \cdot \chi(n)=\chi\left(a n a^{-1}\right),(a \in A, \chi \in N)$. Every irreducible unitary representation of infinite dimension is realized up to equivalence in $L^{2}\left(R^{n}, d x\right)$ cf. [1], [2]: for $\lambda \neq 0$,

$$
\begin{equation*}
T_{\theta}^{\chi} \varphi(g)=e^{\langle\mu, b\rangle} e^{\lambda(\langle b, x\rangle+c)} \varphi(x+a), \text { for } g=g(a, b, c) \tag{1}
\end{equation*}
$$

which is induced from a unitary character $\chi=(\mu, \lambda)$ of N such that $\chi(g(0, b, c))=\exp (\langle\mu, b\rangle+\lambda c),\left(\mu \in \sqrt{-1} \cdot R^{n}, \lambda \in \sqrt{-1} \cdot R\right)$. Let \mathcal{C} be the space of functions φ on R^{n} with finite seminorms $\|\cdot\|_{t}$ for any $t \in R^{n}$, where

$$
\|\varphi\|_{t}=\left(\int_{R^{n}} \exp \langle t,| x| \rangle \cdot|\varphi(x)|^{2} d x\right)^{1 / 2}, \quad\left(|x|=\left(\left|x_{i}\right|_{i}\right)\right.
$$

In the space $\left(\mathcal{C},\|\cdot\|_{t}\right)$ the formula (1) gives a representation \mathscr{D}_{x}. Especially we have $\left\|T_{g}^{x} \cdot \varphi\right\|_{t} \leqq C^{x}(t, g)\|\varphi\|_{r}^{x}(t, g),(\varphi \in \mathcal{C})$, with constants $C^{x}(t, g)$ and $\tau^{x}(t, g)$ independent of φ. From easy argument of the existence of invariant bilinear forms follows

Proposition. (i) A continuous linear operator commuting with all $T_{g}^{x}(g \in G)$ is a scalar multiple of the identity. (ii) Representation \mathscr{D}_{x} extends to a unitary one if and only if so is χ (cf. [4]).
2. Let $Q_{\alpha, \beta, \gamma}$ be a compact set in G of the form

$$
\left\{g(x, y, z) ;\left|x_{i}\right| \leqq \alpha_{i},\left|y_{j}\right| \leqq \beta_{j},|z| \leqq \gamma, i, j=1 \cdots n\right\}
$$

We assign auxiliary functions to $Q=Q_{\alpha, \beta, r}, \tau^{\chi}(t ; Q)=t+2 \beta|R e \lambda|$, and $C^{x}(t, Q)=\exp \left[\langle\beta| R, e \mu| \rangle+\gamma|R e \lambda|+2^{-1}\langle | \tau^{x}(t ; Q)|, \alpha\rangle\right]$.

Lemma. If the support of a function $f \in L^{1}(G)$ is contained in the compact set Q, the Fourier transform of $f: T_{f}^{x}=\int_{G} f(g) T_{g}^{x} d g$, converges strongly in \mathcal{C} for every $\chi \in \hat{N}$ and it holds

$$
\begin{equation*}
\left\|T_{f}^{x} \varphi\right\|_{t} \leqq C^{x}(t ; Q)\|f\|_{L^{1}}\|\varphi\|_{r^{x}(t ; Q)} \quad\left(t \in R^{n}\right) \tag{2}
\end{equation*}
$$

The Plancherel formula takes the following form:

