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Let T>0, u,e L*(R), which is assumed of locally bounded variation;
we consider the Cauchy’s problem:
(1) B 2 n 4o =0 if @0 e RXI0, TI;
(2) u(zx, 0)=u,x) ifxeR;
where f e C'(R*x 10, TD), g € C°(R*x 10, T[) are such that g, f and of/ox
are Lipschitz continuous with respect to %, uniformly in (z, t)e Rx]0, T,
g and of/dx are Lipschitz continuous with respect to «, uniformly in
(u, t) e RX10, T[, and for =0, g(0, -, -) and 3f/3%(0, -, -) are uniform-
ly bounded on RXx 10, T'T.

The problem (1), (2) is generally non linear: the solution may be
discontinuous and not unique, so we need a weak definition.

Definition 1. A weak solution of (1), (2) is a function ue L~(R
%10, TD, satisfying:
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for any ¢ € CX(R %10, T), with compact support.
The existence of a weak solution can be proved by the vanishing
viscosity method from the parabolic equation With e>0:
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using a compactness argument in Lt (RXx10, T[) for the family {u,},s,
(see [3]).

But uniqueness of weak solutions of (1), (2), is not ensured ; starting
from (4) rather than (1), Kruzkov proposes another definition of solu-
tions, that makes existence and uniqueness sure. See [3], and Hopf [2].

Definition 2. A Kruzkov’s solution of (1),(2) is a function
ue L*(Rx]0, T, satisfying :

vk e R, v¢ € CA(R x]10, TD), with compact support and non negative:
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where sg is the sign function: sg(x)=wx/|x|if 2+0, sg(0)=0. vR>03&



