83. On the Zero Points of a Bounded Analytic Function.

By Masatsugu Tsuji.

Mathematical Institute, Imperial University of Tokyo.

(Received May 20. Comm. by T. TAKAGI, M.I.A., June 12, 1926.)

1. Let

(1) $f(x) = 1 + a_1 x + \dots + a_n x^n + \dots$

be regular for |x| < 1 and x_0 the zero point of f(x) which has the smallest modulus. Without any further restriction on f(x), there does not exist a positive constant ρ , such that $|x_0| \ge \rho$ for all functions (1), as the following example shows: in fact f(x) = 1 + nx has a root $x = -\frac{1}{n}$, whose modulus can be made very small by taking n sufficiently large. Now we impose on f(x) the restriction:

(2) f(0) = 1, and |f(x)| < M for $|x| < 1^{10}$

For brevity, we call such a function f(x) a function of class M, and will prove the existence of a positive quantity ρ_n , which has the following properties:

1) Every function of class M has at most n-1 roots in the circle $|x| < \rho_n$.

2) Among the functions of class M, there exists a function which has just n roots in the circle $|x| \leq \rho_n$.

As we shall see later, the number of roots of a function of class M in the circle $|x| \leq \rho_n$ can not exceed n and when there are just n roots in the circle $|x| \leq \rho_n$ all roots must lie on the circle $|x| = \rho_n$. We will call such a function of class M that has just n roots on the circle $|x| = \rho_n$.

Theorem I. Let ρ_n be the quantity defined above, then

$$\rho_n = \frac{1}{\sqrt[n]{M}},$$

the extremal functions are $f(x) = \frac{a_1 - x}{1 - \overline{a}_1 x} \cdot \frac{a_2 - x}{1 - \overline{a}_2 x} \cdot \cdots \cdot \frac{a_n - x}{1 - \overline{a}_n x} \cdot \frac{1}{a_1 \cdots a_n}$

1) From f(0) = 1 and |f(x)| < M we have M > 1.