83. On the Zero Points of a Bounded Analytic Function.

By Masatsuga Tsujr.
Mathematical Institute, Imperial University of Tokyo.
(Received May 20. Comm. by T. Takagr, m.I.a., June 12, 1926.)

1. Let
(1)

$$
f(x)=1+a_{1} x+\cdots+a_{n} x^{n}+\cdots \cdots
$$

be regular for $|x|<1$ and x_{0} the zero point of $f(x)$ which has the smallest modulus. Without any further restriction on $f(x)$, there does not exist a positive constant ρ, such that $\left|x_{0}\right| \geqq \rho$ for all functions (1), as the following example shows: in fact $f(x)=1+n x$ has a root $x=-\frac{1}{n}$, whose modulus can be made very small by taking n sufficiently large. Now we impose on $f(x)$ the restriction :

$$
\begin{equation*}
f(0)=1, \quad \text { and } \quad|f(x)|<M \text { for } \quad|x|<1^{1)} \tag{2}
\end{equation*}
$$

For brevity, we call such a function $f(x)$ a function of class M, and will prove the existence of a positive quantity ρ_{n}, which has the following properties:

1) Every function of class M has at most $n-1$ roots in the circle $|x|<\rho_{n}$.
2) Among the functions of class M, there exists a function which has just n roots in the circle $|x| \leqq \rho_{n}$.

As we shall see later, the number of roots of a function of class M in the circle $|x| \leqq \rho_{n}$ can not exceed n and when there are just n roots in the circle $|x| \leq \rho_{n}$ all roots must lie on the circle $|x|=\rho_{n}$. We will call such a function of class M that has just n roots on the circle $|x|=\rho_{n}$ an extremal function.

Theorem I. Let ρ_{n} be the quantity defined above, then

$$
\rho_{n}=\frac{1}{\sqrt[n]{M}}
$$

the extremal functions are $f(x)=\frac{a_{1}-x}{1-\bar{a}_{1} x} \cdot \frac{a_{2}-x}{1-\bar{a}_{2} x} \cdots \frac{a_{n}-x}{1-\bar{a}_{n} x} \cdot \frac{1}{a_{1} \cdots a_{n}}$,

1) From $f(0)=1$ and $|f(x)|<M$ we have $M>1$.
