33. On an Extension of Pólya's "Ganzwertige ganze Funktion".

By Seigo FUKASAWA. Math. Institute, Tohoku Imp. University, Sendai.

(Rec. Feb. 20, 1927. Comm. by M. FUJIWARA, M. I. A., March 12, 1927.)

Mr. Pólya treated the integral functions g(z) which take integral values for all integral values of z and called them "ganzwertige ganze Funktionen". I have tried to extend this idea in the following way:

1. Let us consider a set of positive integers

 $Z: (z_1, z_2, \cdots)$

and a function g(z), which takes integral values (in the rational corpus or imaginary quadratic corpus) for all z_i . Denote by $\pi(n)$ the number of z_i 's which is not greater than n and put $\underset{|z| \leq r}{\text{Max}} g(z) = M(r)$. We construct a function $\Psi(x)$, which coincides with $\pi(x)$ for all integral values of x and is otherwise linear in x. With this $\Psi(x)$ we form also a function $\varphi(x)$, which is continuously differentiable and such that $\varphi(0) = 0$ and $\varphi(x) \leq \Psi(x)$ for x > 0. Then we have:

Theorem A. If we can chose a real function $\rho = \rho(r)$ such that

$$(r+1)\log r - r - \int_{0}^{r} \varphi'(x)\log(\rho - x)dx + \log\rho M(\rho) \longrightarrow -\infty$$
$$\int_{0}^{r} \frac{\varphi(x)}{1+x}dx - \log M(r) \longrightarrow +\infty \quad as \quad r \longrightarrow +\infty$$

and

then g(z) must be a polynomial.

We can prove this theorem by means of a method, similar to Pólya's, save as we have to evaluate a quantity of the form

$$\prod_{i=1}^n (z-z_i) \quad \text{for} \quad |z| = r.$$

2. As the special cases of this theorem we have :

If one of the following conditions is satisfied :

Pólya, Über die ganzwertige ganze Funktionen, Rend. Palermo, 40 (1915), 1-16.
For the literature see my paper under the same title, Tohoku mathematical Journal 27 (1926), 41-52.