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Mr. Pélya treated the integral functions g(z) which take integral
values for all integral values of z and called them ¢ ganzwertige ganze
Funktionen . I have tried to extend this idea in the following way :

1. Let us consider a set of positive integers

Z: (zl’ Zgyrreeeeent )

and a function g¢(z), which takes integral values (in the rational corpus
or imaginary quadratic corpus) for all z;. Denote by w(n) the number
of 2z’s which is not greater than n» and put Max g¢g(z) = M(r). We

Jz|=r
construct a function ¥(x), which coincides with z(z) for all integral
values of z and is otherwise linear in . With this Z'(z) we form also a
function ¢(z), which is continuously differentiable and such that
¢(0) = 0 and ¢(z) = ¥(x) for z>0. Then we have:
Theorem A. If we can chose a real function p = p(r) such that

(r+1) log r—r— ¢/(z) log (p—2)dz+1og p M(p) —> — o0
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and A s dz—log M(r)—> +00 as r—> +o0

then g(2) must be a polynomial.
We can prove this theorem by means of a method, similar to
Polya’s, save as we have to evaluate a quantity of the form
1 (2—z) for |[z|=r.
=l

2. As the special cases of this theorem we have :
If one of the following conditions is satisfied :
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