32. Note on a Theorem of Fekete.

By Buchin Su.

Mathematical Institute, Tohoku Imp. University, Sendai.

(Rec. Feb. 15, 1927. Comm. by M. FUJIWARA, M. I. A., March 12, 1927.)

1. Fekete¹⁾ and Bálint²⁾ proved the following theorem : If

$$P(z) = p_0 + p_1 z^{\mu_1} + p_2 z^{\mu_2} + \dots + p_k z^{\mu_k}$$

be a polynomial with k+1 terms $(p_0, p_1, \dots, p_k$ are any complex numbers other than zero; and $\mu_1, \mu_2, \dots, \mu_k$ are integers such that $1 \leq \mu_1 < \mu_2 < \dots < \mu_k$, and $P(-1) \neq P(+1)$, then there exists at least one point z in the circle $|z| \leq 2 \cdot k \cot \frac{\varphi}{2} \left(\varphi \leq \frac{\pi}{2} \right)$ in which P(z) takes any given value γ in the domain K', whose boundary consists of two circular arcs subtending an angle φ to the segment joining the points P(-1) and P(+1).

We can, however, extend this domain for γ into the circle K with centre $\{P(-1)+P(+1)\}/2$ and radius $\{|P(+1)-P(-1)| \cot \frac{\varphi}{2}\}/2$, which contains K'.

Our theorem runs as follows :

Theorem 1. Let $P(-1) \neq P(+1)$, and γ be any point in the circle K with centre $\{P(-1) + P(+1)\}/2$ and radius $\frac{1}{2}|P(+1) - P(-1)|\cot\frac{\varphi}{2}$, where $\varphi \leq \frac{\pi}{2}$. Then there exists at least one point z in the circle $|z| \leq 2k \cot\frac{\varphi}{2}$,

in which P(z) takes the value γ .

Proof. Draw two circular arcs passing through the points P(-1), P(+1), subtending an angle $\varphi \leq \frac{\pi}{2}$. Let AA', BB' be the common tangents of two circles and O the midpoint of M(P(-1)) N(P(+1)). Take a point Q on AA' and a point $R(\gamma)$ on the line OQ. Then since we have

¹⁾ Fekete, Jahrsb. d. Deutsch. Math. Ver. 32 (1923), 299-306.

²⁾ Bálint, The same Journal, 34 (1926), 233-237.