32. Note on a Theorem of Fekete.

By Buchin Su.
Mathematical Institute, Tohoku Imp. Unjversity, Sendai.

(Rec. Feb. 15, 1927. Comm. by M. Fujiwara, m. i. a., March 12, 1927.)

1. Fekete ${ }^{1)}$ and Bálint ${ }^{2)}$ proved the following theorem :

If

$$
P(z)=p_{0}+p_{1} z^{\mu_{1}}+p_{2} 2^{\mu_{2}}+\cdots \cdots \cdots \cdots \cdots+p_{k^{2}} 2^{\mu_{k}}
$$

be a polynomial with $k+1$ terms ($p_{0}, p_{1} \cdots \cdots \cdots, p_{k}$ are any complex numbers other than zero; and $\mu_{1}, \mu_{2}, \cdots \cdots \cdots, \mu_{k}$ are integers such that $1 \leqq \mu_{1}$ $<\mu_{2}<\cdots \cdots<\mu_{k}$), and $P(-1) \neq P(+1)$, then there exists at least one point z in the circle $|z| \leqq 2 \cdot k \cot \frac{\Phi}{2}\left(\Phi \leqq \frac{\pi}{2}\right)$ in which $P(z)$ takes any given value γ in the domain K^{\prime}, whose boundary consists of two circular arcs subtending an angle Φ to the segment joining the points $P(-1)$ and $P(+1)$.

We can, however, extend this domain for γ into the circle K with centre $\left\{P(-1)+P^{\prime}(+1)\right\} / 2$ and radius $\left\{\left|P(+1)-P^{\prime}(-1)\right| \cot \frac{\Phi}{2}\right\} / 2$, which contains K^{\prime}.

Our theorem runs as follows:
Theorem 1. Let $P(-1) \neq P(+1)$, and γ be any point in the circle K with centre $\{P(-1)+P(+1)\} / 2$ and radius $\frac{1}{2}|P(+1)-P(-1)| \cot \frac{\Phi}{2}$, where $\Phi \leqq \frac{\pi}{2} . \quad$ Then there exists at least one point z in the circle $|z| \leqq 2 k \cot \frac{\Phi}{2}$, in which $P^{\prime}(z)$ takes the value γ.

Proof. Draw two circular arcs passing through the points $P(-1)$, $P(+1)$, subtending an angle $\Phi \leqq \frac{\pi}{2}$. Let $A A^{\prime}, B B^{\prime}$ be the common tangents of two circles and O the midpoint of $M(P(-1)) N(P(+1))$. Take a point Q on $A A^{\prime}$ and a point $R(\gamma)$ on the line $O Q$. Then since we have

1) Fekete, Jahrsb. d. Deutsch. Math. Ver. 32 (1923), 299-306.
2) Bálint, The same Journal, 34 (1926), 233-237.
