101. Differential Geometry of Conics in the Projective Space of Three Dimensions.

III. Differential invariant forms in the theory of a twoparameter family of conics (second report).
By Akitsugu Kawaguchi.
(Rec. July 12, 1928. Comm. by M. Fujiwara, m.I.A., July 12, 1928.)

4. Normalization of I . A two-parameter family of conics in the projective space of three dimentions can be represented by the equations in the parametric form

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{a}\left(u^{1}, u^{2}\right), \mathfrak{l}=\mathfrak{l}\left(u^{1}, u^{2}\right) \tag{19}
\end{equation*}
$$

when we adopt the coordinate system of a conic in space, introduced in one of my previous papers ${ }^{11}$. For the system a we have already completely discussed in the first report, and we may use the differential forms and the results in that report, because the present theory can be got by a proper combination of those of a conic-family in a plane (theory of \mathfrak{a}) and of a surface in space (theory for \mathfrak{l}). We must, therefore, introduce other differential invariant forms connected with the family, besides those introduced in the first report.

Put

$$
\begin{equation*}
H=h_{\dot{i}} d u^{i} d u^{j}=\frac{1}{\sqrt{G}}\left|\mathfrak{l}_{1} \mathfrak{Y}_{2} \mathfrak{C}_{i j}\right| d u^{i} d u^{j}, \tag{20}
\end{equation*}
$$

which is an invariant differential form, where

$$
G=g_{11} g_{22}=g_{12}{ }^{2}
$$

and $\mathfrak{l}_{i}, \mathfrak{l}_{i j}$ are the first and the second covariant derivatives of \mathfrak{l} with respect to the form $g_{i j} d u^{i} d u^{j}$. Moreover we introduce the quantities $h_{i j}$ such that

$$
\begin{equation*}
h^{i \overline{h_{i}^{i k}}}{ }_{i k}=\delta_{k^{j}}{ }^{j} \tag{21}
\end{equation*}
$$

and normalize the coordinates \mathfrak{l} so that they satisfy the relation

$$
\begin{equation*}
h^{i j} g_{i j}=1, \tag{22}
\end{equation*}
$$

since $h^{i j}$ is multiplied by ρ^{-4} corresponding to a change of proportional facter: ρ l.
5. Another differential form. Consider the differential form of the third order

[^0]
[^0]: 1) Differential geometry of conics in the projective space of three dimensions, I. Fundamental theorem in the theory of a one-parameter family of conics, these Proceedings 4, 255-258.
