PAPERS COMMUNICATED

19. A Generalization of Tauber's Theorem.

By Shin-ichi IZUMI. Institute of Mathematics, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1929.)

1. It was proved by Prof. Tauber¹⁾ that : If $na_n \rightarrow 0$ as $n \rightarrow \infty$, and if

$$\lim_{x\to 1-0} \sum_{n=1}^{\infty} a_n x^n = A,$$

then

The condition $na_n \rightarrow 0$ was replaced by the broader condition $a_n = O\left(\frac{1}{n}\right)$ by Prof. Littlewood², and Professors Hardy and Littlewood³ replaced it again by $na_n > -K$. Finally Dr. R. Schmidt⁴ proved that it is sufficient to assume

$$\lim_{m, n\to\infty} (s_m - s_n) \ge 0,$$

when m > n and $m/n \rightarrow 1$.

On the other hand Prof. Littlewood⁵ proved that :

Suppose that

$$0 < \lambda_{n-1} < \lambda_n, \qquad \lambda_n \to \infty$$

$$\frac{\lambda_n - \lambda_{n-1}}{\lambda_n} \to 0;$$

and further that

(1)

$$a_n = O\left(\frac{\lambda_n - \lambda_{n-1}}{\lambda_n}\right);$$

- 1) Tauber: Monatshefte für Math. u. Physik, 8 (1897).
- 2) Littlewood: Proc. London Math. Soc. (2) 9 (1910).
- 3) Hardy-Littlewood: ibid. (2) 13 (1913).
- 4) R. Schmidt: Math. Zeits. 22 (1925). The direct proof of this theorem was given by Dr. Vijayaraghavan (Journ. London Math. Soc 1 (1916)).
 - 5) Littlewood: loc. cit.