12. On the Univalency and Multivalency of a Class of Meromorphic Functions.

By Unai MINAMI.

Sapporo.

(Comm. by S. KAKEYA, M.I.A., Feb. 12, 1936.)

1. Theorem.

Definition. Let z be a complex variable. We say that a domain is a *fan-shaped*, if it is given by the following expression:

 $\theta_1 \leq \arg z \leq \theta_2$ (θ_1, θ_2 are two arbitrary angles such as $\theta_1 \leq \theta_2$); $r_1 \leq |z| \leq r_2$ (r_1, r_2 are two arbitrary real numbers such as $0 \leq r_1 \leq r_2$).

We consider also as special case the figure obtained by putting $r_2 = \infty$ in the above expression.

Theorem. Consider a function $f(z) = \frac{a}{z} + g(z)$ defined in a certain convex domain A, where g(z) is regular in the domain A and a is an arbitrary constant. Let p be a positive integer. Suppose that

(1°) $g^{(p)}(z)$ ($z \in A$) is contained in a convex domain \mathfrak{A} ,

(2°) there exist a fan-shaped domain B such that the image \mathfrak{B} of B transformed by the function $w = \frac{(-1)^{p+1}p!a}{z^{p+1}}$ is disjoint from \mathfrak{A} : $\mathfrak{A} \cdot \mathfrak{B} = 0$. Then f(z) is at most p-valent in the common part of A and B: $A \cdot B$.

Remark. Evidently, the domain \mathfrak{B} is also fan-shaped and can be easily constructed from B.

Lemma. P. Montel¹⁾ has proved the following lemma:

Be g(z) a function which is regular in a certain convex domain A. Let $z_1, z_2, ..., z_p, z_{p+1}$ be p+1 arbitrary points of A. Consider the following expressions

$$\begin{aligned} \Delta_0(z_1) = g(z_1) , \qquad \Delta_1(z_2, z_1) = \frac{g(z_2) - g(z_1)}{z_2 - z_1} , \qquad \dots \dots , \\ \Delta_p(z_{p+1}, z_p, \dots, z_1) = \frac{\Delta_{p-1}(z_{p+1}, z_{p-1}, \dots, z_1) - \Delta_{p-1}(z_p, z_{p-1}, \dots, z_1)}{z_{p+1} - z_p} \end{aligned}$$

Then $p! \Delta_p(z_{p+1}, z_p, ..., z_1) \in \mathfrak{A}$ where \mathfrak{A} is a convex domain which contain all the points $g^{(p)}(z)$, $z \in A$.

Proof of the Theorem. We take p+1 arbitrary points $z_1, z_2, ..., z_{p+1}$ in $A \cdot B$ and we consider the following expressions $\overline{A}_0, \overline{A}_1, ..., \overline{A}_p$:

¹⁾ P. Montel: Annali R. Scuola normale super. di Pisa, 2 serie, 1, 1932, p. 371-384; and Comptes Rendus, t. 201, 1935, p. 322-324.