PAPERS COMMUNICATED

9. Some Theorems on a Cluster-set of an Analytic Function.

By Kiyoshi Noshiro.
Mathematical Institute, Hokkaido Imperial University, Sapporo.

(Comm. by S. Kakeya, m.I.A., Feb. 12, 1937.)

1. Let $f(z)$ be uniform and meromorphic in a finite connected domain D. We shall first state some notations- \mathfrak{D} : the value-set of $f(z)$ in D, F : the boundary set of \mathfrak{D}, H : the set of all cluster values ${ }^{1)}$ at the boundary of D, \bar{M} : the closure of $M, C M$: the complementary set of M. It is evident that $F \subset H \subset \bar{D}$ and they are all closed sets. In general the equality $F=H$ does not hold. For example, if we take $w=f(z)=z^{2}$ and $D: 0<\arg z<\frac{3 \pi}{2}, R_{1}<|z|<R_{2}$, then \mathfrak{D} is a ring: $R_{1}^{2}<|w|<R_{2}^{2}$ and H consists of two segments $\left(-R_{2}^{2},-R_{1}^{2}\right),\left(R_{1}^{2}, R_{2}^{2}\right)$ and two circles $|w|=R_{1}^{2},|w|=R_{2}^{2}$. Now suppose that $F=H$. Then we see easily that for any value $\alpha \in \mathfrak{D}, f(z)$ never takes α at infinite times, for otherwise α would be a cluster value, so that α would belong to $F=H$. This is a contradiction. Next we shall show that $f(z)$ is exactly p-valent in D, if a certain value $\alpha \in \mathscr{D}$ is taken p times. Consider a closed circular domain K contained entirely interior to \mathfrak{D}. The set of points z, each of which has an image in \bar{K}, in general, consists of a finite or an enumerable infinity of connected domains $\overline{\Delta_{i}}$ in D. However, since $H=F$, each $\bar{\Delta}_{i}$ must lie completely in the interior of D and so the number of $\bar{\Delta}_{i}$ is finite. Then $f(z)$ takes in D any value $\alpha \in K$ exactly at the same number of times, say p times, since this holds in each Δ_{i} by the principle of arguments. Now, let α and β be two finite points in \mathfrak{D}. Then we can find a finite sequence of closed circular dises, $\bar{K}_{0}, \bar{K}_{1}, \ldots \ldots, \bar{K}_{n}$ such that each $\bar{K}_{i} \subset \mathfrak{D}, \alpha \in K_{0}, \beta \in K_{n}$ and $K_{i} \cdot K_{i+1} \neq 0$ where $i=0,1, \ldots \ldots, n-1$. Hence $f(z)$ takes α and β at the same number of times, then $f(z)$ is exactly p-valent in D, i. e. $f(z)$ takes in D any value p times. Conversely, if $f(z)$ is exactly p-valent, then it follows that $H=F$. Let α be an arbitrary finite value in \mathfrak{D} and a_{i} be an α-point of order p_{i}. If there are $n \alpha$-points in total, then clearly $p=\sum_{i=1}^{n} p_{i}$. Let \bar{K}_{i} be a small circle: $\left|z-a_{i}\right| \leqq \rho$, lying within D, such that $\bar{K}_{j} \cdot \bar{K}_{j^{\prime}}=0 \quad\left(i \neq j^{\prime}\right)$, and denote by \mathfrak{D}_{i} the value-set of $f(z)$ in K_{i}. Then there is a circle $C:|w-\alpha|<\sigma$, contained in $\prod_{i=1}^{n} \mathfrak{D}_{i}$, any value of which can be taken at least p_{i} times in each $K_{i}(i=1,2, \ldots \ldots, n)$, provided that σ is sufficiently small. Consequently it follows that α cannot be a cluster-value, for otherwise there be a point $z^{\prime} \in D-\sum_{i=1}^{n} \bar{K}_{i}$ such
[^0]
[^0]: 1) We call a a cluster value of $f(z)$ at $z=\zeta$, if there exists a sequence $z_{n} \rightarrow \zeta$, $z_{n} \neq \zeta, z_{n} \in D$, such that $f\left(z_{n}\right) \rightarrow a$.
