PAPERS COMMUNICATED

9. Some Theorems on a Cluster-set of an Analytic Function.

By Kiyoshi NOSHIRO.

Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by S. KAKEYA, M.I.A., Feb. 12, 1937.)

1. Let f(z) be uniform and meromorphic in a finite connected domain D. We shall first state some notations— \mathfrak{D} : the value-set of f(z) in D, F: the boundary set of \mathfrak{D} , H: the set of all cluster values¹⁾ at the boundary of D, \overline{M} : the closure of M, CM: the complementary set of M. It is evident that $F \subset H \subset \mathfrak{D}$ and they are all closed sets. In general the equality F=H does not hold. For example, if we take $w=f(z)=z^2$ and $D: 0 < \arg z < \frac{3\pi}{2}$, $R_1 < |z| < R_2$, then \mathfrak{D} is a ring: $R_1^2 < |w| < R_2^2$ and H consists of two segments $(-R_2^2, -R_1^2)$, (R_1^2, R_2^2) and two circles $|w| = R_1^2$, $|w| = R_2^2$. Now suppose that F = H. Then we see easily that for any value $\alpha \in \mathfrak{D}$, f(z) never takes α at infinite times, for otherwise α would be a cluster value, so that α would belong to F=H. This is a contradiction. Next we shall show that f(z) is exactly p-valent in D, if a certain value $a \in \mathfrak{D}$ is taken p times. Consider a closed circular domain \overline{K} contained entirely interior to \mathfrak{D} . The set of points z, each of which has an image in \overline{K} , in general, consists of a finite or an enumerable infinity of connected domains $\overline{a_i}$ in D. However, since H=F, each \bar{a}_i must lie completely in the interior of D and so the number of $\overline{a_i}$ is finite. Then f(z) takes in D any value $a \in K$ exactly at the same number of times, say p times, since this holds in each Δ_i by the principle of arguments. Now, let α and β be two finite points in D. Then we can find a finite sequence of closed circular discs, \overline{K}_0 , \overline{K}_1 ,, \overline{K}_n such that each $\overline{K}_i \subset \mathfrak{D}$, $\alpha \in K_0$, $\beta \in K_n$ and $K_i \cdot K_{i+1} \neq 0$ where $i=0, 1, \dots, n-1$. Hence f(z) takes α and β at the same number of times, then f(z) is exactly p-valent in D, i.e. f(z) takes in D any value p times. Conversely, if f(z) is exactly p-valent, then it follows that H=F. Let α be an arbitrary finite value in \mathfrak{D} and a_i be an *a*-point of order p_i . If there are *n a*-points in total, then clearly $p = \sum_{i=1}^{n} p_i$. Let \overline{K}_i be a small circle: $|z - a_i| \leq \rho$, lying within D, such that $\overline{K}_i \cdot \overline{K}_{j'} = 0$ $(i \neq j')$, and denote by \mathfrak{D}_i the value-set of f(z) in K_i . Then there is a circle $C: |w-\alpha| < \sigma$, contained in $\prod_{i=1}^{n} \mathfrak{D}_i$, any value of which can be taken at least p_i times in each K_i (i=1, 2, ..., n), provided that σ is sufficiently small. Consequently it follows that a cannot be a cluster-value, for otherwise there be a point $z' \in D - \sum_{i=1}^{n} \overline{K}_i$ such

¹⁾ We call a a cluster value of f(z) at $z=\zeta$, if there exists a sequence $z_n \to \zeta$, $z_n \neq \zeta$, $z_n \in D$, such that $f(z_n) \to a$.