80. A Relation between the Length of a Plane Curve and Angles Stretched by it.

By Sôichi KAKEYA and Kinjiro KUNUGI. (Comm. by S. KAKEYA, M.I.A., Oct. 12, 1937.)

Let us consider a continuous plane curve C, defined by the equation: $x = \varphi(t)$, $y = \psi(t)$ where $\varphi(t)$ and $\psi(t)$ are one-valued and continuous functions of t in $[0, 1] = [0 \leq t \leq 1]$. For brevity, let us call a continuous plane curve without double point a *Jordan curve*. A Jordan curve is therefore a continuous transformation of the segment [0, 1]which is biuniform with a possible exception: $\varphi(0) = \varphi(1)$, $\psi(0) = \psi(1)$. We shall denote this transformation by (x, y) = f(t). Let T be a set of numbers contained in [0, 1]. As t ranges over T, the point (x, y) ranges over a sub-set A of C. A will be called a *generalized arc of* C, and denoted by f(T). The minimum value τ_0 and the maximum value τ_1 of $\overline{T}^{(1)}$ are called *extreme values of* A.

Let now C be rectifiable, and let U=[a, b] be an interval contained in [0, 1]. The arc $f\{U\}$ will be denoted by $\mathfrak{A}(a, b)$. Devide [a, b] into n sub-intervals by the points $t_0=a < t_1 < t_2 < \cdots < t_n=b$. To the value $t_m(m=0, 1, 2, \ldots, n)$, there corresponds the point $p_m=f(t_m)$ of the curve. Denote by (p_{m-1}, p_m) the segment between two points p_{m-1} , p_m , and by $(\overline{p_{m-1}}, p_m)$ its length. We define as usual the length of the arc $\mathfrak{A}(a, b)$ as the limit of the sum $\sum_{m=1}^{n} (\overline{p_{m-1}}, p_m)$ (the length of the polygon whose vertices are p_m), when the greatest of the lengths $t_m - t_{m-1}$ tends to 0, and denote it by l(a, b). The complement of \overline{T} (in regard of $[\tau_0, \tau_1]$) is decomposed into at most enumerable infinity of contiguous intervals (a_r, b_r) . We call $l(A) = l(\tau_0, \tau_1) - \sum_{r=1}^{\infty} l(a_r, b_r)$ the length of the generalized arc A^{2}

If A_1, A_2, \ldots, A_k are a finite number of generalized arcs of C such as $A = \sum_{\nu=1}^{k} A_{\nu}$, we have, as usual

$$l(A) \leq l(A_1) + l(A_2) + \cdots + l(A_k).$$

We can divide the interval $[\tau_0, \tau_1]$ into *n* sub-intervals by the points of $T: t_0 < t_1 < t_2 < \dots < t_n$, so that the sum $\sum_{m=1}^{n} (\overline{p_{m-1}, p_m})$ converges to $l(\tau_0, \tau_1) - \sum_{r=1}^{\infty} l(a_r, b_r) + \sum_{r=1}^{\infty} (\overline{f(a_r), f(b_r)}) = l(A) + \sum_{r=1}^{\infty} (\overline{f(a_r), f(b_r)})$ as *n* tends to infinity.

Theorem 1. Let A be a generalized arc of a rectifiable Jordan curve C, whose extreme values are τ_0, τ_1 . Suppose that A is contained in a circle of radius S(S > 0), and that to each point p of A, we can associate two half-lines pq, pq' with the properties:

¹⁾ \overline{T} is the set of all points of T together with its limiting points.

²⁾ l(A) is the linear measure of \overline{A} on C.