80. A Relation between the Length of a Plane Curve and Angles Stretched by it.

By Sôichi Kakeya and Kinjiro Kunugr.

(Comm. by S. Kakeya, m.i.A., Oct. 12, 1937.)
Let us consider a continuous plane curve C, defined by the equation: $x=\varphi(t), y=\psi(t)$ where $\varphi(t)$ and $\psi(t)$ are one-valued and continuous functions of t in $[0,1]=[0 \leqq t \leqq 1]$. For brevity, let us call a continuous plane curve without double point a Jordan curve. A Jordan curve is therefore a continuous transformation of the segment [0,1$]$ which is biuniform with a possible exception: $\varphi(0)=\varphi(1), \psi(0)=\psi(1)$. We shall denote this transformation by $(x, y)=f(t)$. Let T be a set of numbers contained in $[0,1]$. As t ranges over T, the point (x, y) ranges over a sub-set A of C. A will be called a generalized arc of C, and denoted by $f(T)$. The minimum value τ_{0} and the maximum value τ_{1} of $\bar{T}^{1)}$ are called extreme values of A.

Let now C be rectifiable, and let $U=[a, b]$ be an interval contained in $[0,1]$. The arc $f\{U\}$ will be denoted by $\mathfrak{A}(a, b)$. Devide [a,b] into n sub-intervals by the points $t_{0}=a<t_{1}<t_{2}<\cdots \cdots<t_{n}=b$. To the value $t_{m}(m=0,1,2, \ldots \ldots, n)$, there corresponds the point $p_{m}=f\left(t_{m}\right)$ of the curve. Denote by (p_{m-1}, p_{m}) the segment between two points p_{m-1}, p_{m}, and by $\left(\overline{p_{m-1}, p_{m}}\right)$ its length. We define as usual the length of the arc $\mathfrak{A}(a, b)$ as the limit of the sum $\sum_{m=1}^{n} \overline{\left(p_{m-1}, p_{m}\right)}$ (the length of the polygon whose vertices are p_{m}), when the greatest of the lengths $t_{m}-t_{m-1}$ tends to 0 , and denote it by $l(a, b)$. The complement of \bar{T} (in regard of $\left[\tau_{0}, \tau_{1}\right]$) is decomposed into at most enumerable infinity of contiguous intervals $\left(a_{r}, b_{r}\right)$. We call $l(A)=l\left(\tau_{0}, \tau_{1}\right)-\sum_{r=1}^{\infty} l\left(a_{r}, b_{r}\right)$ the length of the generalized arc $A^{2}{ }^{2}$

If $A_{1}, A_{2}, \ldots \ldots, A_{k}$ are a finite number of generalized arcs of C such as $A=\sum_{\nu=1}^{k} A_{\nu}$, we have, as usual

$$
l(A) \leqq l\left(A_{1}\right)+l\left(A_{2}\right)+\cdots \cdots+l\left(A_{k}\right)
$$

We can divide the interval [τ_{0}, τ_{1}] into n sub-intervals by the points of $T: t_{0}<t_{1}<t_{2}<\cdots \cdots<t_{n}$, so that the sum $\sum_{m=1}^{n}\left(\overline{p_{m-1}, p_{m}}\right)$ converges to $l\left(\tau_{0}, \tau_{1}\right)-\sum_{r=1}^{\infty} l\left(a_{r}, b_{r}\right)+\sum_{r=1}^{\infty}\left(\overline{f\left(a_{r}\right), f\left(b_{r}\right)}\right)=l(A)+\sum_{r=1}^{\infty}\left(\overline{f\left(a_{r}\right), f\left(b_{r}\right)}\right)$ as n tends to infinity.

Theorem 1. Let A be a generalized arc of a rectifiable Jordan curve C, whose extreme values are τ_{0}, τ_{1}. Suppose that A is contained in a circle of radius $S(S>0)$, and that to each point p of A, we can associate two half-lines $p q, p q^{\prime}$ with the properties:

[^0]
[^0]: 1) \bar{T} is the set of all points of T together with its limiting points.
 2) $l(A)$ is the linear measure of \bar{A} on C.
