PAPERS COMMUNICATED

7. On the Generalized Circles in the Conformally Connected Manifold.

By Yosio Mutô.
Tokyo Imperial University.
(Comm. by S. Kakeya, m.I.A., Feb. 13, 1939.)

As in Mr. K. Yano's paper ${ }^{1}$) in which the same problem is studied, take in the tangential space an ($n+2$)- spherical "repère naturel" $\left[A_{P}\right]$ satisfying the following equations ${ }^{2}$:

$$
\begin{gather*}
A_{0}^{2}=A_{\infty}^{2}=A_{0} A_{i}=A_{\infty} A_{j}=0, \quad A_{0} A_{\infty}=-1, \quad A_{i} A_{j}=G_{i j}=\frac{g_{i j}}{g^{\frac{1}{n}}}, \tag{1}\\
(i, j, k, \ldots=1,2, \ldots, n)
\end{gather*}
$$

the connection being defined by

$$
\begin{equation*}
d A_{P}=\omega_{P}^{q} A_{Q}, \quad(P, Q, R, \ldots=0,1, \ldots, n, \infty) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{P}^{Q}=\Pi_{P k}^{Q} d x^{k}, \tag{3}
\end{equation*}
$$

$$
\left.\begin{array}{c}
\Pi_{0 k}^{\infty}=\Pi_{\infty k}^{0}=\Pi_{0 k}^{0}=\Pi_{\infty}^{\infty}=0, \quad \Pi_{00 j}^{i}=\delta_{j}^{i}, \quad \Pi_{j k}^{\infty}=G_{j k}, \quad G_{i j} \Pi_{\infty k}^{j}=\Pi_{j k}^{0} \tag{4}\\
\Pi_{j k}^{i}=\frac{1}{2} G^{i k}\left(\partial_{j} G_{k h}+\partial_{k} G_{j h}-\partial_{h} G_{j k}\right)
\end{array}\right\}
$$

Then any curve $x^{i}(s)$ in the manifold can be developed into a curve in the tangential space at any point $x^{i}\left(s_{0}\right)$ on the curve by the formulae (2). Let us consider the curves whose developments are circles.

When we take two quantities a^{P} and b^{P} which are contragradient to A_{P} and satisfy the equations

$$
\left.\begin{array}{rl}
G_{P Q} a^{P} a^{Q}=1, \quad G_{P Q} a^{P} b^{Q} & =0, \quad G_{P Q} b^{P} b^{Q}=0, \tag{5}\\
a^{\infty} & =0,
\end{array}\right\}
$$

where

$$
G_{P Q}=A_{P} A_{Q},
$$

then

$$
\begin{equation*}
\frac{1}{b^{\infty}} A_{0}+a^{a} A_{a} t+\frac{1}{2} b^{P} A_{P} t^{2} \quad(\alpha=0,1,2, \ldots, n) \tag{6}
\end{equation*}
$$

is an invariant and represents a circle in the tangential space. Because of (5), (6) becomes, when multiplied by b^{∞},

$$
\begin{align*}
A & =A_{0}+b^{\infty} a^{a} A_{a}+\frac{1}{2} b^{\infty} b^{P} A_{P} t^{2} \\
& =\left(1+G_{i j} a^{i} b^{i} t+\frac{1}{4} G_{i j} b^{i} b^{i} t^{2}\right) A_{0}+\left(b^{\infty} a^{i} t+\frac{1}{2} b^{\infty} b^{i} t^{2}\right) A_{i}+\frac{1}{2}\left(b^{\infty} t\right)^{2} A_{\infty} \tag{7}
\end{align*}
$$

[^0]
[^0]: 1) K. Yano: Sur les circonférences généralisées dans les espaces à connexion conforme, Proc. 14 (1938), 329-32.
 2) K. Yano: Remarques relatives à la théorie des espaces à connexion conforme, Comptes Rendus, 206 (1938), 560-2.
