# 35. Operator-theoretical Treatment of Markoff's Process, II. 

By Kôsaku Yosida.<br>Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.i.a., May 12, 1939.)

§1. Let $P(x, E)$ denote the transition probability that the point $x$ of the interval $\Omega=(0,1)$ is transferred, by a simple Markoff's process, into the Borel set $E$ of $\Omega$ after the elapse of a unit time. It is naturally assumed that $P(x, E)$ is completely additive for Borel sets $E$ if $x$ is fixed and that $P(x, E)$ is Borel measurable in $x$ if $E$ is fixed. $P(x, E)$ defines a linear operator $P$ on the complex Banach space ( $\mathfrak{M}$ ) in $(\mathfrak{P})^{1)}$ :

$$
P \cdot f=g, \quad g(E)=\int_{\Omega} P(x, E) f(d x) .
$$

It is easy to see that the iterated operator $P^{n}$ is defined by the kernel $P^{(n)}(x, E)=\int_{\Omega} P^{(n-1)}(x, d y) P(y, E)\left(P^{(1)}(x, E)=P(x, E)\right)$. In the preceding note, ${ }^{2}$ ) it is proved that the following condition ( $D$ ) implies the condition ( $K$ ): $\left\{\begin{array}{l}\text { there exist an integer } s \text { and positive constants } b, \eta(<1) \text { such } \\ \text { that, if mes }(E)<\eta, P^{(s)}(x, E)<1-b \text { uniformly in } x, E .\end{array}\right.$
(K) \{ there exist an integer $n$ and a completely continuous linear operator $V$ such that $\left\|P^{n}-V\right\|_{\mathfrak{R}}<1$.
The condition ( $K$ ) is more general than ( $D$ ), since there exists $P(x, E)$ which satisfies ( $K$ ) but not ( $D$ ). In [I] it is proved that, if $P(x, E)$ satisfies ( $D$ ), then
(B) $\left\{\begin{array}{l}\text { the proper values } \lambda \text { with modulus } 1 \text { of } P \text { are all roots of } \\ \text { unity. }\end{array}\right.$

Thus, combined with ( $K$ ), we were able to give an operator-theoretical treatment of the Markoff's process $P(x, E)$ under the condition ( $D$ ). (See [I].)

In the present note I intend to show that the condition ( $K$ ) im-

[^0]
[^0]:    1) $(\mathfrak{R})$ is the linear space of all the totally additive set functions defined for all the Borel sets of $\Omega$. For any $f \in(\mathfrak{R})$ we define its norm $\|f\|_{\mathfrak{R}}$ by the total variation of $f$ on $\Omega$.
    2) K. Yosida: Operator-theoretical Treatment of the Markoff's Process, Proc. 14 (1938), 363. This note will be referred to as [I] below. It contains many misprints. On page 364, line 27 and line $28(\mathbb{R})$ is to be read ( $M^{*}$ ). On page 364, line $28 h(d z)$ is to be read $h(z)$. On page 365 , line 7 " $f_{i_{k}}(E) \cdot f_{j_{k}}(E) \equiv 0$ for $i \neq j$ " is to be read " $f_{i_{k}}\left(E_{i_{k}}\right)=1$ where $E_{i_{k}} \cdot E_{j_{k}}=$ void for $i \neq j$." On page 367, line 4 and 5 "From... by (6)" is to be read "Evident from iii) and the equations $f_{(i+1)_{a}}(E)=\int_{0}^{1} P(x, E) f_{i_{a}}(d x)$ below."
