35. Operator-theoretical Treatment of Markoff's Process, II.

By Kôsaku Yosida.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., May 12, 1939.)

§ 1. Let P(x, E) denote the transition probability that the point x of the interval $\mathcal{Q} = (0, 1)$ is transferred, by a simple Markoff's process, into the Borel set E of \mathcal{Q} after the elapse of a unit time. It is naturally assumed that P(x, E) is completely additive for Borel sets E if x is fixed and that P(x, E) is Borel measurable in x if E is fixed. P(x, E) defines a linear operator P on the complex Banach space (\mathfrak{M}) in $(\mathfrak{M})^{1}$:

$$P \cdot f = g$$
, $g(E) = \int_{\mathcal{G}} P(x, E) f(dx)$.

It is easy to see that the iterated operator P^n is defined by the kernel $P^{(n)}(x, E) = \int_{\mathcal{Q}} P^{(n-1)}(x, dy) P(y, E) \left(P^{(1)}(x, E) = P(x, E)\right)$. In the preceding note,²⁾ it is proved that the following condition (D) implies the condition (K):

- (D) { there exist an integer s and positive constants b, η (<1) such that, if mes $(E) < \eta$, $P^{(s)}(x, E) < 1-b$ uniformly in x, E.
- (K) { there exist an integer *n* and a completely continuous linear operator *V* such that $||P^n V||_{\mathfrak{M}} < 1$.

The condition (K) is more general than (D), since there exists P(x, E) which satisfies (K) but not (D). In [I] it is proved that, if P(x, E) satisfies (D), then

(B) { the proper values λ with modulus 1 of P are all roots of unity.

Thus, combined with (K), we were able to give an operator-theoretical treatment of the Markoff's process P(x, E) under the condition (D). (See [I].)

In the present note I intend to show that the condition (K) im-

¹⁾ (\mathfrak{M}) is the linear space of all the totally additive set functions defined for all the Borel sets of \mathcal{Q} . For any $f \in (\mathfrak{M})$ we define its norm $||f||_{\mathfrak{M}}$ by the total variation of f on \mathcal{Q} .

²⁾ K. Yosida: Operator-theoretical Treatment of the Markoff's Process, Proc. 14 (1938), 363. This note will be referred to as [I] below. It contains many misprints. On page 364, line 27 and line 28 (\mathfrak{M}) is to be read (M^*). On page 364, line 28 h(dz) is to be read h(z). On page 365, line 7 " $f_{i_k}(E) \cdot f_{j_k}(E) \equiv 0$ for $i \neq j$ " is to be read " $f_{i_k}(E_{i_k}) = 1$ where $E_{i_k} \cdot E_{j_k} = \text{void}$ for $i \neq j$." On page 367, line 4 and 5 "From... by (6)" is to be read "Evident from iii) and the equations $f_{(i+1)_a}(E) = \int_0^1 P(x, E) f_{i_a}(dx)$ below."