PAPERS COMMUNICATED

30. On the Compactness of a Class of Functions.

By Shin-ichi Izumi.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., May 12, 1939.)

1. In this note we will consider the class of functions defined in the finite interval (a, b).

Let \mathfrak{F}_{c} be a class of continuous functions defined in (a, b). If any sequence of functions in \mathfrak{F}_{c} contains a uniformly convergent subsequence, then \mathfrak{F}_{c} is called compact or compact in (C), where (C) denotes the class of all continuous functions. Arzèla's theorem concerning the compactness of \mathfrak{F} c, is well known, which runs as follows:

Theorem A. In order that the class \mathfrak{F}_{c} be compact, it is necessary and sufficient that
1°. \mathfrak{F}_{c} is bounded, that is, there is a constant K such that $|f(x)| \leqq K$ for all f in $\mathfrak{F}_{\text {c }}$.
2°. \mathfrak{F}_{c} is equally continuous, that is, for any positive number δ, there is an $\eta>0$ such that the oscillation of functions in any interval with length less than η is less than δ.

Instead of (C) we take the class $\left(L^{p}\right)(p \geqq 1)$. Let \mathfrak{F}_{l} be a class of functions in (L^{p}). If any sequence in \mathfrak{F}_{l} contains a mean convergent subsequence with index p, then \mathfrak{F}_{l} is called compact or compact in (L^{p}). Fréchet has proved the following theorem ${ }^{1)}$:

Theorem B. In order that the class \mathfrak{F}_{l} be compact, it is necessary and sufficient that $1^{\circ} . \mathfrak{F}_{l}$ is almost equally continuous and 2°. \mathfrak{F}_{l} is equally integrable.

Finally let (S) be the class of all finite measurable functions. Let \mathfrak{F}_{s} be a class of functions in (S). If any sequence in \mathfrak{F}_{s} contains a subsequence convergent in measure, then \mathfrak{F}_{s} is called compact or compact in (S). Fréchet has also proved that ${ }^{2)}$

Theorem C. In order that the class \mathfrak{F}_{s} be compact, it is necessary and sufficient that $1^{\circ} . \mathfrak{F}_{s}$ is almost equally bounded and $\mathfrak{2}^{\circ} . \mathfrak{F}_{s}$ is almost equally continuous.

On the other hand Kolmogoroff ${ }^{3)}$ has proved the following theorem:
Theorem D. In order that \mathfrak{F}_{l} in $\left(L^{p}\right)$ be compact, it is necessary and sufficient that
$1^{\circ} . \mathfrak{F}_{l}$ is bounded, that is, there is a constant K such that

$$
\int_{a}^{b}|f(x)|^{p} d x \leqq K
$$

for all f in \mathfrak{F}_{l}.

[^0]
[^0]: 1) M. Fréchet, Acta de Szeged, 8 (1937).
 2) Fréchet, Fund. Math., 9 (1911).
 3) A. Kolmogoroff, Göttinger Nachr., 1931. For the detailed literature, see T. Takahashi, Studia Math. 5 (1935).
