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1. Let f(z) be integrable and periodic with period 2 and let its
Fourier series be

1 a0/, (a cos n/b sin nx).(1) f() -If f(z)eL (p > 1), then (1) is strongly summable for any positive
index at a Lebesgue set, that is:

(2)

for every k 3> 0, where s, is the partial sums of (1). If f(z) is merely
integrable (2)does no necessarily hold at the Lebegue set.> Pro-
lessors G.H. Hardy and J.E. Littlewood proved, however, the follow-
ing theorem?>

Theorem. If

jl (u)Idu=o(t),(3)

then

(4) , s(z)-f(z)I- o(n log n),

where

(5) 1(u)=- (f(x-t-u)+f(x-u) 2f(:r,)}

They proved this theorem by power series method. The object of
this paper is to give an elementary proof.

2. We make the ordinary simplificationa Suppose that f(t)is
even and x=O, f(O)=O, so that (u)=f(u). Thus we shall prove, under
the condition

(6)

that

(7)

Io If(u) du=(t)=o(t),

] o (n log n).

1) This is due to Hardy and Littlewood, The strong summability of Fourier
series, Fund. Math., 25 (1935), 162-189.

2) Hardy-Littlewood, loc. cit. It is unsolved, however, whether (2) holds almost
everywhere.


