PAPERS COMMUNICATED

62. A Proof of a Theorem of Hardy and Littlewood Concerning Strong Summability of Fourier Series.

By Tatsuo KAWATA.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1939.)

1. Let f(x) be integrable and periodic with period 2π and let its Fourier series be

(1)
$$f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
.

If $f(x) \in L_p$ (p > 1), then (1) is strongly summable for any positive index at a Lebesgue set, that is:

(2)
$$\sum_{\nu=0}^{n} |s_{\nu}(x) - f(x)|^{k} = o(n),$$

for every k > 0, where s_{ν} is the partial sums of (1). If f(x) is merely integrable (2) does not necessarily hold at the Lebesgue set.¹⁾ Professors G. H. Hardy and J. E. Littlewood proved, however, the following theorem.²⁾

Theorem. If

(3)
$$\int_0^t |\phi(u)| \, du = o(t) \, ,$$

then

(4)
$$\sum_{\nu=0}^{n} |s_{\nu}(x) - f(x)|^{2} = o(n \log n),$$

where

(5)
$$\phi(u) = \frac{1}{2} \left\{ f(x+u) + f(x-u) - 2f(x) \right\}.$$

They proved this theorem by power series method. The object of this paper is to give an elementary proof.

2. We make the ordinary simplifications. Suppose that f(t) is even and x=0, f(0)=0, so that $\phi(u)=f(u)$. Thus we shall prove, under the condition

(6)
$$\int_{0}^{t} |f(u)| \, du = \Phi(t) = o(t) \, ,$$

that

(7)
$$\sum_{\nu=0}^{n} s_{\nu}^{2} = o(n \log n).$$

1) This is due to Hardy and Littlewood, The strong summability of Fourier series, Fund. Math., 25 (1935), 162-189.

²⁾ Hardy-Littlewood, loc. cit. It is unsolved, however, whether (2) holds almost everywhere.