38. On Affine Geometry of Abelian Groups.

By Kôshichi Toyoda.
Harbin Technical College, Manchoukuo.
(Comm. by M. Fujiwara, m.i.A., May 13, 1940.)

1. Let a set G of elements a, b, c, \ldots, satisfy the following axioms:
(1) For any pair of elements a, b, the product $a \cdot b$ of G determines uniquely one element c in G, viz. $a \cdot b=c$.
(2) For two given elements a (or b) and c, the equation $a \cdot b=c$ can be uniquely solved by b (or a) in G.
(3) For any four elements a, b, c and d, we have

$$
(a \cdot b)(c \cdot d)=(a \cdot c) \cdot(b \cdot d) .
$$

(4) Each element a in G is idempotent, viz. $a \cdot a=a$.

In my previous paper ${ }^{1)}$, we know that the operation $a \cdot b$ represents an abstract generalization of the mean operation which divides the straight line joining two points a, b in a given ratio $m: n$.

Now, we apply
Definition (A). Let us suppose that a set $L(a, b)$ consists of elements which are produced from two elements a, b by the operation (1) and its inverse operation (2) with possible repetitions. Then, we say that the set $L(a, b)$ is the straight line ${ }^{2)}$ joining two points a, b in the space G.

Under the above definition (A), can we constitute a space of affine geometry from $G{ }^{\text {? }}{ }^{3}$ But the answer for this problem is not always affirmative, because the straight line $L(a, b)$ of G does not necessarily admit the familiar proposition:
(L) Any two straight lines, not parallel to each other, meet in one and only one point.

In the following lines, we shall proceed to find a necessary and sufficient condition of the problem.
2. In place of the product $a \cdot b$, let us introduce the new product $a+b$ into G as follows:
(5) Let a and b be any two given elements in G. If $a=x \cdot s$ and $b=s \cdot y$, for a fixed element s, then we put $a+b=x \cdot y$.

Here, we $\mathrm{know}^{4)}$ that the set G forms an abelian group with respect to the new product $a+b$ and moreover the old product $a \cdot b$

[^0]
[^0]: 1) K. Toyoda, On Axioms of Mean Transformation and Automorphic Transformations of Abelian Groups, Tôhoku Math. Journal 47 (1940).
 2) This definition is due to the remark of M. Takasaki.
 3) G. Hessenberg, Acta Math. 29 ;
 H. Wiener, Jahrsber. d. D. M. V. (1891);
 G. Hassenberg, Grundlagen der Geometrie ;
 M. Pasch und M. Dehn, Vorlesungen über neue Geometrie;
 K. Reidmeister, Vorlesungen über Grundlagen der Geometrie;
 O. Veblen and J. W. Young, Projective Geometry, I, II ;
 H. Weyl, Raum, Zeit, Matrie.
 4) K. Toyoda, loc. cit.
