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47. Concircular Geometry I. Concircular
Transformations.
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§1. Let C:u’(s) be a curve in a Riemannian space V, whose
fundamental quadratic form is

(1.1) d?=g,du"dw, (A, #,v,..=1,238,..,n).

Denoting the unit tangent, and unit normals of order 1,2, ...,n—1

and the ﬁrst second, ... (n—1)-st curvatures of C by E‘ E‘ E‘ and

;1¢, ;2¢,. o r%pmtlvely, the Frenet equations of C may be Wntten as

(1.2) fs B=—%En e, @=1,2..,m;x=%=0),
where 8/0s denotes covariant differentiation with respect to arc length
s along C.
A geodesic circle” is defined as a curve whose first curvature is
constant and whose second curvature is identically zero. For such a
geodesic circle, we have, from (1.2),
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where x is a constant. Differentiating (1.3) covariantly and then sub-
stituting (1.4) in the obtained equation, we have
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The ;?‘ denoting the unit tangent, we may put
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so that we have, from (1.3),
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The equation (1.5) then becomes
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1) A. Fialkow: Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), 443-473.
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