PAPERS COMMUNICATED

47. Concircular Geometry I. Concircular Transformations.

By Kentaro Yano.
Mathematical Institute, Tokyo Imperial University. (Comm. by S. Kakeya, m.I.A., June 12, 1940.)

§1. Let $C: u^{\lambda}(s)$ be a curve in a Riemannian space V_{n} whose fundamental quadratic form is

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d u^{\mu} d u^{\nu}, \quad(\lambda, \mu, \nu, \ldots=1,2,3, \ldots, n) \tag{1.1}
\end{equation*}
$$

Denoting the unit tangent, and unit normals of order $1,2, \ldots, n-1$ and the first, second, $\ldots(n-1)$-st curvatures of C by $\xi_{1}^{\lambda}, \xi_{2}^{\lambda}, \ldots, \xi_{n}^{\lambda}$ and $\stackrel{1}{\varkappa},{ }_{\varkappa}^{2}, \ldots,{ }_{n}^{n-1}$ respectively, the Frenet equations of C may be written as

$$
\begin{equation*}
\frac{\delta}{\partial s} \xi_{a}^{\lambda}=-{ }_{x}^{a-1} \xi_{a-1}^{\lambda}+\underset{a+1}{a}, \quad\left(a=1,2, \ldots, n ; \xi^{\boldsymbol{a}}=\boldsymbol{n}=0\right), \tag{1.2}
\end{equation*}
$$

where $\delta / \delta s$ denotes covariant differentiation with respect to arc length s along C.

A geodesic circle ${ }^{1}$ is defined as a curve whose first curvature is constant and whose second curvature is identically zero. For such a geodesic circle, we have, from (1.2),

$$
\begin{align*}
& \frac{\delta}{\delta s} \xi_{1}^{\lambda}=\underset{\substack{x \\
2 \\
2}}{\lambda}, \tag{1.3}
\end{align*}
$$

where $\frac{1}{x}$ is a constant. Differentiating (1.3) covariantly and then substituting (1.4) in the obtained equation, we have

$$
\begin{equation*}
\frac{\delta^{2}}{\delta s^{2}} \xi_{1}^{\lambda}=-\left(\frac{1}{x}\right)_{1}^{2 \xi^{\lambda}} . \tag{1.5}
\end{equation*}
$$

The $\underset{1}{\xi^{\lambda}}$ denoting the unit tangent, we may put

$$
\xi_{1}^{\lambda}=\frac{\delta u^{\lambda}}{\delta s}
$$

so that we have, from (1.3),

$$
\left(\frac{1}{u}\right)^{2}=g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\delta s^{2}} \frac{\delta^{2} u^{\nu}}{\delta s^{2}} .
$$

The equation (1.5) then becomes

$$
\begin{equation*}
\frac{\delta^{3} u^{\lambda}}{\partial s^{3}}+g_{\mu \nu} \frac{\delta^{2} u^{\mu}}{\partial s^{2}} \frac{\delta^{2} u^{\nu}}{\partial s^{2}} \frac{\delta u^{\lambda}}{\delta s}=0 . \tag{1.6}
\end{equation*}
$$

1) A. Fialkow : Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), 443-473.
