60. On One-parameter Groups of Operators.

By Masanori FUKAMIYA.

Mathematical Institute, Osaka Imperial University. (Comm. by M. FUJIWARA, M.I.A., July 12, 1940.)

1. Theorem. Let E be a separable Banach space, and let $\{U_t\}$, $(-\infty < t < \infty)$ be a one-parameter group of operators on E to E such that: (1) $|| U_t || = 1$, (2) $U_t U_s = U_{t+s}$ for any t, s, (3) $f(U_t x)$ is measurable in t for every $x \in E$ and for every $f \in \overline{E}$. Then there exist the operators R_z (resolvents) and A, which satisfy the following properties:

- (1) R_z is defined for every complex number z, with $\mathcal{I}_m(z) \neq 0$,
- (2) R_z is a bounded, linear operator on E to E, and $||R_z|| \leq \frac{1}{|\mathcal{F}_m(z)|}$,
- (3) $(z-z') R_z R_{z'} = R_z R_{z'}$, for every z, z' with $\mathscr{I}_m(z) \neq 0$, $\mathscr{I}_m(z') \neq 0$,
- (4) $R_z x = 0$ implies x = 0, for any z;
- (5) A is a closed linear oparator on E to E, whose domain D(A) is dense in E, and

$$(A-zI)\cdot R_z=I$$
, $R_z(A-zI)=I$ (in $D(A)$),

(6) For any
$$x \in D(A)$$
, $\lim_{t\to 0} \frac{U_t-1}{t} \cdot x = A \cdot x$.

We will prove these results, following the method of M. H. Stone.¹⁾ Recently similar facts were obtained by I. Gelfand.²⁾ But the method is completely different from ours.

2. Proof: Let $\psi(\tau; z)$ be defined by

$$\begin{split} \psi(\tau;z) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{\lambda - z} e^{-i\lambda\tau} d\lambda \qquad \left(\mathscr{I}_m(z) \neq 0\right) \\ &= \begin{cases} 0 & \tau > 0 \\ i e^{-iz\tau} & \tau < 0 \end{cases} \left(\mathscr{I}_m(z) > 0\right), \quad = \begin{cases} -i e^{-iz\tau} & \tau > 0 \\ 0 & \tau < 0 \end{cases} \left(\mathscr{I}_m(z) < 0\right). \end{split}$$

Then

(i)
$$\frac{1}{\lambda - z} = \int_{-\infty}^{\infty} \psi(\tau; z) e^{i\lambda\tau} d\tau,$$

(ii)
$$(z - z') \int_{-\infty}^{\infty} \psi(\tau; z) \psi(\sigma - \tau; z') d\tau = \psi(\sigma; z) - \psi(\sigma; z'),$$

(iii)
$$\overline{\psi(\tau; z)} = \psi(-\tau; \overline{z}).$$

We define F(f) by

$$F(f) = \int_{-\infty}^{\infty} \psi(\tau; z) f(U_{\tau} x) d\tau, \quad f \in \overline{E}, \quad x \in E \text{ and } \mathscr{G}_m(z) \neq 0.$$

1) M. H. Stone, Linear Transformations in Hilbert Space, 1932, Chap. IV, V; Annals of Math., 33 (1932), pp. 643-648.

J. von Neumann, Annals of Math., 33 (1932), pp. 567–573.

²⁾ Gelfand, C. R. U. R. S. S., 25 (1939).