PAPERS COMMUNICATED

58. On the Division of a Probability Law.

By Tatsuo KAWATA.

Sendai Technical High School.

(Comm. by M. FUJIWARA, M.I.A., July 12, 1940.)

1. If a random variable X is represented as a sum $X_1 + X_2$ of independent variables X_1 and X_2 , in other words, if the characteristic function of X

$$f(t) = \int_{-\infty}^{\infty} e^{itx} d\sigma(x)$$

 $\sigma(x)$ being the distribution function of X, is represented as a product $f_1(t) f_2(t)$ of characteristic functions $f_1(t)$ and $f_2(t)$ of X_1 and X_2 respectively, X is said to be divisible by X_1 or X_2 . The division of X by some random variable is not necessarily determined uniquely what was proved by Gnedenko and Khintchine.¹⁾ That is, there exist characteristic functions f(t), $f_1(t)$, $f_2(t)$ and $f_3(t)$ such that

(1)
$$f(t) = f_1(t)f_2(t) = f_1(t)f_3(t) ,$$

where $f_2(t)$ is not identically equal to $f_3(t)$. But it was shown by P. Lévy that if X is indefinitely divisible, then the division is uniquely determined. The purpose of this paper is to discuss the unicity of divisibility in terms of a distribution function of X.

2. If there exists a t_0 such that $f_2(t_0)
ightharpoonup f_3(t_0)$, then since a characteristic function is continuous there exists an interval a < t < b in which $f_2(t)
ightharpoonup f_3(t)$. Since if (1) holds then $f_1(t) \{f_2(t) - f_3(t)\} = 0$, in this case $f_1(t)$ or f(t) vanishes in a < t < b. Thus the sufficient conditions for the non-vanishing of f(t) in any interval is also the sufficient conditions for the unique determination of division of X. Hence known results²⁾ on non-vanishing of function yield the following theorems.

Theorem 1. Let $\sigma(x)$ be the distribution function of a random variable X and let $\theta(u)$ be a positive, non-decreasing function defined in $(0, \infty)$ such that

(2)
$$\int_{1}^{\infty} \frac{\theta(u)}{u^{2}} du = \infty .$$

If for some constant a > 0

(3)
$$\sigma(-u+a) - \sigma(-u-a) = O(\exp(-\theta(u))$$

and X is divisible by some variable, then the quotient is unique.

B. Gnedenko, Sur les fonctions caractéristiques, Bull. l'Univ. Moscou, 1 (1937),
 P. Lévy, Théorie de l'addition des variables aléatoires, (1937), pp. 189–190.

²⁾ T. Kawata, Non-vanishing of functions and related problems. Tohoku Math. Journ., 46 (1940), Theorems 4 and 11.