PAPERS COMMUNICATED

58. On the Division of a Probability Law.

By Tatsuo Kawata.
Sendai Technical High School.
(Comm. by M. Fujiwara, m.I.A., July 12, 1940.)

1. If a random variable X is represented as a sum $X_{1}+X_{2}$ of independent variables X_{1} and X_{2}, in other words, if the characteristic function of X

$$
f(t)=\int_{-\infty}^{\infty} e^{i t x} d \sigma(x)
$$

$\sigma(x)$ being the distribution function of X, is represented as a product $f_{1}(t) f_{2}(t)$ of characteristic functions $f_{1}(t)$ and $f_{2}(t)$ of X_{1} and X_{2} respectively, X is said to be divisible by X_{1} or X_{2}. The division of X by some random variable is not necessarily determined uniquely what was proved by Gnedenko and Khintchine. ${ }^{1)}$ That is, there exist characteristic functions $f(t), f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ such that

$$
\begin{equation*}
f(t)=f_{1}(t) f_{2}(t)=f_{1}(t) f_{3}(t), \tag{1}
\end{equation*}
$$

where $f_{2}(t)$ is not identically equal to $f_{3}(t)$. But it was shown by P . Lévy that if X is indefinitely divisible, then the division is uniquely determined. The purpose of this paper is to discuss the unicity of divisibility in terms of a distribution function of X.
2. If there exists a t_{0} such that $f_{2}\left(t_{0}\right) \neq f_{3}\left(t_{0}\right)$, then since a characteristic function is continuous there exists an interval $a<t<b$ in which $f_{2}(t) \neq f_{3}(t)$. Since if (1) holds then $f_{1}(t)\left\{f_{2}(t)-f_{3}(t)\right\}=0$, in this case $f_{1}(t)$ or $f(t)$ vanishes in $a<t<b$. Thus the sufficient conditions for the non-vanishing of $f(t)$ in any interval is also the sufficient conditions for the unique determination of division of X. Hence known results ${ }^{2)}$ on non-vanishing of function yield the following theorems.

Theorem 1. Let $\sigma(x)$ be the distribution function of a random variable X and let $\theta(u)$ be a positive, non-decreasing function defined in $(0, \infty)$ such that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\theta(u)}{u^{2}} d u=\infty . \tag{2}
\end{equation*}
$$

If for some constant a (>0)

$$
\begin{equation*}
\sigma(-u+a)-\sigma(-u-a)=O(\exp (-\theta(u)) \tag{3}
\end{equation*}
$$

and X is divisible by some variable, then the quotient is unique.

[^0]
[^0]: 1) B. Gnedenko, Sur les fonctions caractéristiques, Bull. l'Univ. Moscou, 1 (1937), P. Lévy, Théorie de l'addition des variables aléatoires, (1937), pp. 189-190.
 2) T. Kawata, Non-vanishing of functions and related problems. Tohoku Math. Journ., 46 (1940), Theorems 4 and 11.
