52. A Remark on the Theory of General Fuchsian Groups.

By Kiiti Morita.

Tokyo Bunrika Daigaku, Tokyo. (Comm. by T. TAKAGI, M.I.A., July 12, 1941.)

Prof. M. Sugawara has recently introduced a notion of general fuchsian groups and developed a theory of automorphic functions of higher dimensions¹⁾. In the present note we shall show that there is another class of groups which can be treated with his method. The classical case of hyperfuchsian groups is included here as a special one (the case m=1 below).

§ 1. The space $\mathfrak{A}_{(n,m)}$. General thetafuchsian functions in $\mathfrak{A}_{(n,m)}$. Let us consider the set $\mathfrak{R}_{(n,m)}$ of all matrices of the type (n,m). The subset of $\mathfrak{R}_{(n,m)}$, whose elements are matrices satisfying the condition $E^{(m)} - \overline{Z'}Z > 0^2$, shall be denoted by $\mathfrak{A}_{(n,m)}^{(n,m)}$. Now we put $S_{(n,m)} = \begin{pmatrix} E^{(n)} & 0\\ 0 & -E^{(m)} \end{pmatrix}$. If a matrix U of order (n+m) satisfies the condition

(1)
$$\bar{U}'S_{(n,m)}U=S_{(n,m)},$$

then the substitution

(2)
$$W = (U_1 Z + U_2) (U_3 Z + U_4)^{-1}$$

carries $\mathfrak{A}_{(n,m)}$ into itself, where $U = \begin{pmatrix} U_1 & U_2 \\ U_3 & U_4 \end{pmatrix}$, and the types of U_1 , U_2 , U_3 , U_4 are respectively (n, n), (n, m), (m, n), (m, m). Hence the matrices satisfying the condition (1) induce the displacements in the space $\mathfrak{A}_{(n,m)}$ and form a group $\Gamma_{(n,m)}$. The matrices inducing the identical displacement in $\mathfrak{A}_{(n,m)}$ are of the form $\omega E^{(n+m)}$ ($|\omega|=1$) and constitute a group $\Gamma_{(n,m)}$. The factor group $\Gamma_{(n,m)}/\Gamma_{(n,m)}^*$ is called the group $\mathfrak{B}_{(n,m)}$ of all displacements in $\mathfrak{A}_{(n,m)}$. $\mathfrak{B}_{(n,m)}$ is transitive in $\mathfrak{A}_{(n,m)}$:

$$U_A = \begin{pmatrix} N^{-1} & -N^{-1}A \\ -M^{-1}\bar{A}' & M^{-1} \end{pmatrix}, \quad E^{(n)} - A\bar{A}' = N\bar{N}', \quad E^{(m)} - \bar{A}'A = M\bar{M}'.$$

Then U_A carries A into the zero point and $U_A \in \Gamma_{(n,m)}$.

3) If we define the distance between two points Z_1 and Z_2 as $[Sp(\overline{Z_1-Z_2})'(Z_1-Z_2)]^2$ then $\mathfrak{A}_{(n,m)}$ is an open, bounded, convex set in a complete metric space $\mathfrak{R}_{(n,m)}$.

¹⁾ M. Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und Theta-Reihen, Ann. Math. **41**, 488–494; M. Sugawara, On the general Zetafuchsian functions, Proc. **16** (1940), 367–372; M. Sugawara, A generalization of Poincaré-space, Proc. **16** (1940), 373–377. In the sequel these papers will be cited as S. I, S. II, S. III respectively.

²⁾ By $E^{(m)}$ we mean the unite matrix of order m. H > 0 means that a hermitian matrix H is positive definite. The same notations as in S. I will be used in this note.