52. A Remark on the Theory of General Fuchsian Groups.

By Kiiti Morita.
Tokyo Bunrika Daigaku, Tokyo.
(Comm. by T. Takagi, m.I.A., July 12, 1941.)

Prof. M. Sugawara has recently introduced a notion of general fuchsian groups and developed a theory of automorphic functions of higher dimensions ${ }^{1}$. In the present note we shall show that there is another class of groups which can be treated with his method. The classical case of hyperfuchsian groups is included here as a special one (the case $m=1$ below).
§1. The space $\mathfrak{A}_{(n, m)}$. General thetafuchsian functions in $\mathfrak{A}_{(n, m)}$. Let us consider the set $\Re_{(n, m)}$ of all matrices of the type (n, m). The subset of $\Re_{(n, m)}$, whose elements are matrices satisfying the condition $E^{(m)}-\bar{Z}^{\prime} Z>0^{2)}$, shall be denoted by $\mathfrak{U}_{(n, m)}{ }^{3)}$. Now we put $S_{(n, m)}=\left(\begin{array}{cc}E^{(n)} & 0 \\ 0 & -E^{(m)}\end{array}\right)$. If a matrix U of order $(n+m)$ satisfies the condition

$$
\begin{equation*}
\bar{U}^{\prime} S_{(n, m)} U=S_{(n, m)} \tag{1}
\end{equation*}
$$

then the substitution

$$
\begin{equation*}
W=\left(U_{1} Z+U_{2}\right)\left(U_{3} Z+U_{4}\right)^{-1} \tag{2}
\end{equation*}
$$

carries $\mathfrak{A}_{(n, m)}$ into itself, where $U=\left(\begin{array}{ll}U_{1} & U_{2} \\ U_{3} & U_{4}\end{array}\right)$, and the types of U_{1}, U_{2}, U_{3}, U_{4} are respectively $(n, n),(n, m),(m, n),(m, m)$. Hence the matrices satisfying the condition (1) induce the displacements in the space $\mathfrak{A}_{(n, m)}$ and form a group $\Gamma_{(n, m)}$. The matrices inducing the identical displacement in $\mathfrak{A}_{(n, m)}$ are of the form $\omega E^{(n+m)}(|\omega|=1)$ and constitute a group $\Gamma_{(n, m)}^{*}$. The factor group $\Gamma_{(n, m)} \mid \Gamma_{(n, m)}^{*}$ is called the group $\mathfrak{B}_{(n, m)}$ of all displacements in $\mathfrak{A}_{(n, m)} . \mathfrak{B}_{(n, m)}$ is transitive in $\mathfrak{A}_{(n, m)}$: For a given point A we put

$$
U_{A}=\left(\begin{array}{cc}
N^{-1} & -N^{-1} A \\
-M^{-1} \bar{A}^{\prime} & M^{-1}
\end{array}\right), \quad E^{(n)}-A \bar{A}^{\prime}=N \bar{N}^{\prime}, \quad E^{(m)}-\bar{A}^{\prime} A=M \bar{M}^{\prime}
$$

Then U_{A} carries A into the zero point and $U_{A} \in \Gamma_{(n, m)}$.

[^0]
[^0]: 1) M. Sugawara, Über eine allgemeine Theorie der Fuchsschen Gruppen und ThetaReihen, Ann. Math. 41, 488-494; M. Sugawara, On the general Zetafuchsian functions, Proc. 16 (1940), 367-372 ; M. Sugawara, A generalization of Poincaré-space, Proc. 16 (1940), 373-377. In the sequel these papers will be cited as S. I, S. II, S. III respectively.
 2) By $E^{(m)}$ we mean the unite matrix of order m. $H>0$ means that a hermitian matrix H is positive definite. The same notations as in S . I will be used in this note.
 3) If we define the distance between two points Z_{1} and Z_{2} as $\left.\left[\operatorname{Sp} \overline{\left(Z_{1}-Z_{2}\right.}\right)^{\prime}\left(Z_{1}-Z_{2}\right)\right]^{\frac{1}{2}}$ then $\mathfrak{U}_{(n, m)}$ is an open, bounded, convex set in a complete metric space $\mathfrak{R}_{(n, m)}$.
