90. On the Behaviour of an Inverse Function of a Meromorphic Function at its Transcendental Singular Point.

By Masatsugu TsujI.
Mathematical Institute, Tokyo Imperial University. (Comm. by T. Yosie, m.I.A, Nov. 12, 1941.)

Let $w=f(z)$ be a meromorphic function for $|z|<\infty$ with a transcendental singularity at $z=\infty$ and its inverse function $z=\varphi(w)$ have a transcendental singularity ω with $w=0$ as its projection on the w plane. Denote Δ the set of values taken by $z=\varphi(w)$ which defines the ρ-neighbourhood of an accessible boundary point ω of the Riemann surface F of $z=\varphi(w) . \Delta$ is a domain on the z-plane bounded, in general, by an enumerable infinity of analytic curves. $|w|=|f(z)|<\rho$ in Δ and $|w|=\rho$ on the boundary of Δ. Let z_{0} be a point in Δ. The common part of Δ and $\left|z-z_{0}\right|<r$ consists of a certain number of connected domains. Let Δ_{r} be one of such domains which contains z_{0}. The boundary of Δ_{r} consists of curves of three types: $\left\{a_{i}^{(r)}\right\}$, $\left\{b_{i}^{(r)}\right\}$, $\left\{c_{i}^{(r)}\right\}$, where $a_{1}^{(r)}, a_{2}^{(r)}, \ldots, a_{n_{r}}^{(r)}$ are circular arcs on $\left|z-z_{0}\right|=r, b_{1}^{(r)}$, $b_{2}^{(r)}, \ldots, b_{m_{r}}^{(r)}$ are the parts of the boundary of Δ which meet $\left|z-z_{0}\right|=r$, and $c_{1}^{(r)}, c_{2}^{(r)} \ldots, c_{p_{r}}^{(r)}$ are the closed curves which are the boundaries of holes in Δ_{r}. We put

$$
\begin{equation*}
\Lambda(r)=p_{r}=\text { number of holes in } \Delta_{r} . \tag{1}
\end{equation*}
$$

Let F_{r} correspond to Δ_{r} on F and $A(r)$ be the area of F_{r} and put

$$
\begin{equation*}
S(r)=\frac{A(r)}{\pi \rho^{2}} . \tag{2}
\end{equation*}
$$

$A(r)$ is an increasing function of r and is continuous except at most an enemerable infinity of points $\left\{a_{i}\right\}$, where $A\left(a_{i}-0\right)=A\left(a_{i}\right)$. Let $A_{i}^{(r)}$, $B_{i}^{(r)}, C_{i}^{(r)}$ correspond to $a_{i}^{(r)}, b_{i}^{(r)}, c_{i}^{(r)}$ on F_{r} and $L_{i}^{(r)}$ be the length of $A_{i}^{(r)}$ and put $L(r)=L_{1}^{(r)}+L_{2}^{(r)}+\cdots+L_{n_{r}}^{(r)}$. We will show that

$$
\begin{equation*}
\lim _{r \rightarrow \infty} A(r)=\infty \tag{3}
\end{equation*}
$$

and there exists a sequence $\left\{r_{n}\right\}$ tending to infinity, such that

$$
\begin{equation*}
\frac{L(r)}{S(r)} \rightarrow 0, \quad \text { when } \quad r=r_{n} \rightarrow \infty . \tag{4}
\end{equation*}
$$

In the following we consider only such $r=r_{n}$.
We will prove (3) and (4) by modifying slightly Mr. Noshiro's ${ }^{1{ }^{1}}$

1) K. Noshiro: On the singularities of analytic functions. Japanese Journal of Mathematics, 17 (1940), 37-96.
