13. An Abstract Integral, VII.

By Shin-ichi IZUMI.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1942.)

Introduction. This is the preliminary report of analysis of functions with range in a complete vector lattice. This subject was firstly studied by S. Bochner¹⁾. §1 contains the definitions and theorems of The definition of the measurability is that of measurable functions. S. Bochner. $\S 2$ is the integration theory. Integral is defined by the idea of McNeille²⁾. § 3 contains some remarks on integrals. Some related integrals are introduced and a modified integral is shown to coincide with the Bochner integral³⁾ when the range is the Banach lattice. §4 is the Fourier series theory. Here the Bessel inequality is proved. This is not true for the Bochner integral³⁾ with range in the Banach space. This point is a reason why we develop the analysis of functions with range in a lattice in stead of a Banach space. §5 is a generalization of \$1 and \$2. The content of \$5 shows that the theory of integral and that of measure can be placed under a general theory. In the ordinary theory one of those theories is derived from the other⁴.

§ **1.** Measurable functions⁵⁾.

[1.1] I is a fixed finite interval in an Euclidean space.

[1.2] V is a fixed σ -complete vector lattice.

We will consider functions with domain I and with range in V and will denote them by f(x) and g(x), etc. Such functions are supposed to be defined uniquely in a full set of I and need not be defined in the complementary null set.

[1.3] f(x) is called a simple function if there are an integer n, a set of real numbers $(a_1, a_2, ..., a_n)$ and a set of disjoint measurable sets $(E_1, E_2, ..., E_n)$ such that

$$I = \sum_{k=1}^{n} E_k, \quad f(x) = a_k \text{ in } E_k \ (k = 1, 2, ..., n).$$

[1.4] f(x) is called to be measurable if there is a sequence of simple functions $f_n(x)(n=1, 2, ...)$ such that $f_n(x)$ tends to f(x) relative uniformly almost everywhere, that is, there are sequences of functions $\lambda_n(x), g_n(x)(n=1, 2, ...)$ such that $\lambda_n(x)$ tends to zero monotonously (by the order topology) almost everywhere as $n \to \infty$ and $|f_n(x) - f(x)| \leq \lambda_n(x)g(x)$ almost everywhere. We write $f_n(x) \to f(x)$ (r. u.) a. e. or f(x) = (r. u)-lim $f_n(x)$, a. e.

If f(x) is measurable, then we write $f(x) \in M$.

¹⁾ S. Bochner, Proc. Nat. Academy, (1939).

²⁾ McNeille, ibidem (1941).

³⁾ S. Bochner, Fund. Math., 20 (1930).

⁴⁾ cf. S. Izumi, An Abstract integral IV, Proc. Imp. Acad. of Japan, (1941).

^{5) [], ()} and {} denote definition, theorem and axiom respectively.