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13. An Abstract Integral, VII.
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(Comm. by M. FUJIWARA, M.I.A., Feb. 12, 1942.)

ltrodction. This is the preliminary report of analysis of func-
tions with range in a complete vector lattice. This subject was firstly
studied by S. Bochner>. 1 contains the definitions and theorems of
measurable functions. The definition of the measurability is that of
S. Bochner. 2 is the integration theory. Integral is defined by the
idea of McNeille. 3 contains some remarks on integrals. Some
related integrals are introduced and a modified integral is shown to
coincide with the Bochner integrala) when the range is the Banach
lattice. 4 is the Fourier series theory. Here the Bessel inequality
is proved. This is not true for the Bochner integral with range in
the Banach space. This point is a reason why we develop the analysis
of functions with range in a lattice in stead of a Banach space. 5
is a generalization of 1 and 2. The content of 5 shows that the
theory of integral and that of measure can be placed under a general
theory. In the ordinary theory one of those theories is derived from
the other>.

1. Measurable functian).
[1.1] I is a fixed finite interval in an Euclidean space.
[1.2] V is a fixed a-complete vector lattice.
We will consider functions with domain I and with range in V

and will denote them by f(x) and g(x), etc. Such functions are sup-
posed to be defined uniquely in a full set of I and need not be defined
in the complementary null set.

[1.3] f(x) is called a simple function if there are an integer n, a
set of real numbers (a, a, ..., a) and a set of disjoint measurable sets
(E, E, ..., E.) such that

I=E, f(x)=a in E (k=l, 2, ..., n).

[1.4] f(x)is called to be measurable if there is a sequence of
simple functions f,(x)(n=l, 2, ...) such that f,(x) tends to f(x) relative
uniformly almost everywhere, that is, there are sequences of functions
L(x), g,(x)(n= 1, 2, ...) such that 2(x) tends to zero monotonously (by the
order topology) almost everywhere as n-- o and If(x)-f(x) 2(x)g(x)
almost everywhere. We write f,(x)-f(x) (r. u.) a.e. or f(x)=(r, u)-
]imf.(x), a.e.

If f(x) is measurable, then we write f(x)e M.
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