49. On Krull's Conjecture Concerning Completely Integrally Closed Integrity Domains, II.

By Tadasi Nakayama.
Department of Mathematics, Nagoya Imperial University.
(Comm. by T. Takagi, m.I.A., May 12, 1942.)

The case of partially ordered abelian groups being settled in Part I^{1}, let us turn to integrity domains; we want to obtain an integrity domain which is completely integrally closed but can never be expressed as an intersection of special valuation rings ${ }^{2}$. Our following construction depends however on that of Part I.

Let A be a complete Boolean algebra satisfying the condition in Part I, Lemma 1; there be a countable set of non-atomic non-zero elements v_{i} in A so that for any $a>0$ in A we have $a \geqq v_{i}$ for a suitable i^{3}. Denote its representation space by $\Omega=\Omega(A)$. Then the lattice-ordered abelian group L_{Ω} of continuous functions on Ω, taking (rational) integers and $\pm \infty$ as values and finite except on nowhere dense sets, cannot, as was shown in Part I, be represented faithfully by (finite) real-valued functions (over any space). Now, let K be a field, and consider, abstractly, variables $x(\mathfrak{p})$ which are in one-one correspondence with the points \mathfrak{p} in Ω. When $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{s}\right\}$ is a finite set of (distinct) points of Ω, a polynomial of the variables $x\left(\mathfrak{p}_{1}\right), x\left(\mathfrak{p}_{2}\right), \ldots$, $x\left(\mathfrak{p}_{s}\right)$ over K will be called in the following a $\mathfrak{p}_{1} \mathfrak{p}_{2} \ldots \mathfrak{p}_{s}$-polynomial. Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{t}\right\}$ be a subsystem of $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{s}\right\}$. A $\mathfrak{p}_{1} \mathfrak{p}_{2} \ldots \mathfrak{p}_{s}$-polynomial $\boldsymbol{F}\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)\left(=F\left(x\left(\mathfrak{p}_{1}\right), \ldots, x\left(\mathfrak{p}_{s}\right)\right)\right)$ is said to be reduced to a $\mathfrak{p}_{1} \ldots \mathfrak{p}_{t}$-polynomial $F\left(p_{1} \ldots \mathfrak{p}_{t}\right)$, when it becomes the latter by putting $x\left(\mathfrak{p}_{t+1}\right)=\cdots$ $=x\left(\mathfrak{p}_{s}\right)=1$; in symbol $F\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right) \rightarrow F\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{t}\right)$. Further, let P be a set of first category in Ω and suppose that for each finite system $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ of points in Ω not belonging to P there is given a $\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}$-polynomial $F\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)$. If here $F\left(\mathfrak{p} \ldots \mathfrak{p}_{s}\right) \rightarrow F\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{t}\right)$ whenever $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}>\left\{\mathfrak{p}_{1}, \ldots\right.$, $\left.\mathfrak{p}_{t}\right\}$, we call this whole scheme a polynomial series on Ω and denote it by $\{F ; P\}=\{F(\mathfrak{p} \ldots \mathfrak{p}) ; P\}$. Two polynomial series $\{F ; P\}$ and $\left\{F^{\prime} ; P^{\prime}\right\}$, such that $F\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)=F^{\prime}\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)$ for every $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\} \subset \Omega-Q$, where Q is a set of first category containing P, P^{\prime}, will be called equivalent; we consider equivalent polynomial series as one and the same. The sum (product) of two polynomial series $\left\{F_{1} ; P_{1}\right\}$ and $\left\{F_{2} ; P_{2}\right\}$ is defined by taking $F_{1}\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)+F_{2}\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)\left(F_{1}\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right) F_{2}\left(\mathfrak{p}_{1} \ldots \mathfrak{p}_{s}\right)\right)$ for $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\} \subset$ $\Omega-\left(P_{1} \cup P_{2}\right)$. Then the totality of polynomial series (the totality of classes of equivalent polynomial series, to be exact) forms a ring R_{Ω},

[^0]
[^0]: 1) T. Nakayama, On Krull's conjecture concerning completely integrally closed integrity domains, I., Proc. 18 (1942), 185.
 2) See the papers cited in Part I. Cf. also Enzyklopädie der Math. Wiss. $\mathrm{I}_{1}, 11$, p. 40.
 3) For instance, let A be the complete Boolean algebra of regular open sets of the interval $(0,1)$.
