105. An Abstract Integral (VIII).

By Masae ORIHARA and Gen-ichirô SUNOUCHI. Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., Nov. 12, 1942.)

Introduction. In this paper we intend to establish the theory of Lebesgue integral of the vector lattice valued functions. This subject has been discussed by Bochner¹⁾ and Izumi²⁾. Our consideration differs from them in that it is based on the notion of semi-ordering.

We define the Lebesgue integral which is analogous to Young³, Daniell⁴, and Banach's⁵ one in real valued functions. It is noteworthy that the integrable functions are not always approximated by step functions or Riemann integrable functions, although the integral is obtained by an extension from step functions or Riemann integrable functions. This integral includes obviously the Bochner's and, if we neglect conditions on the vector lattice, includes the Izumi's.

And moreover our considerations can be abstracted in that way which regards the extension of an integral as the extension of a linear operation between two given vector lattices. This problem has been treated by Izumi and Nakamura⁶⁾ in the case of a linear functional.

1. The class T_0 . Let f(t) be an abstract function defined in abstract space and with range in a complete regular vector lattice L^{7} .

We assume that the initial class T_0 of functions is closed with respect to the operations:— $cf, f_1+f_2, f_1 \cup f_2, f_1 \cap f_2$, and that the functions of T_0 are bounded. Further let a functional operation I(f) be defined on T_0 such that

- (A) $I(f_1+f_2)=I(f_1)+I(f_2);$
- (L) If $f_1 \ge f_2 \ge \cdots$ and $\lim f_n = 0$, then $\lim I(f_n) = 0$.

From these we can easily conclude that

- (C) I(cf) = cI(f), where c is a real constant;
- (P) If $f \ge 0$, $I(f) \ge 0$.

Then the class T_0 is obviously a lattice. For some instances of the class T_0 , we may consider the class of step functions or Riemann integrable functions.

2. Extension to class T_1 from T_0 . If $f_1 \leq f_2 \leq \cdots$ where $f_i \in T_0$, then $\lim f_n$ exists (if we adjoin $+\infty$ to the range), and we define T_1 as class of such limit functions. For such (f_n) we have $I(f_1) \leq I(f_2) \leq \cdots$ and then $\lim I(f_n)$ exists (if allow $+\infty$ as limit).

¹⁾ Bochner, Nat. Acad. Sci., 26 (1940), p. 29.

²⁾ Izumi, Proc. 18 (1942), 53.

³⁾ Young, Proc. London Math. Soc., 18 (1914), p. 109.

⁴⁾ Daniell, Ann. of Math., **19** (1917), p. 279.

⁵⁾ Saks, Theory of the Integral, 1937, p. 320.

⁶⁾ Izumi and Nakamura, Proc. 16 (1940), 518.

⁷⁾ For these definitions and discussions, see Kantorovitch, Recueil Math. of Moskau,

^{49 (1940),} p. 209, and Orihara, This Proc. Regurality is used in (4.6) and (4.7) only.