530 [Vol. 18,

103. On the Congruence Relations on Lattices.

By Nenosuke Funayama.
Rikugun Yonen-gakko, Sendai.
(Comm. by M. Fujiwara, M.i.a., Nov. 12, 1942.)

G. Birkhoff¹⁾ has proved that the congruence relations on any modular lattice of finite dimension form a Boolean algebra. The object of this paper is to prove that the congruence relations on any lattice of finite dimension form a distributive lattice.

By a "congruence relation" on a lattice with operation \cup and \cap is meant a division of its elements into subsets which preserves the univalence of the operations, e.g. makes the subset containing $x \cup y$ depends only on the subset containing x and the subset containing y, and also for $x \cap y$.

A congruence relation θ on any lattice L of finite dimension is determined by its prime quotients which θ annuls. (a/b) is said to be annuled when $a \equiv b(\theta)$. We denote by θ the set of all prime quotients which θ annuls.

Lemma 1. θ satisfies the following condition. (1) When $a/b \in \theta$, u/v is any projective quotient of a/b, and p/q is such a prime quotient as $u \ge p > q \ge v$, then $p/q \in \theta$.

Proof. As u/v is a projective quotient of a/b which θ annuls, u/v is also annuled by θ . Then $p=u \cap p \equiv v \cap p=v$, $q=v \cup q \equiv u \cup q=u$, thus $p \equiv q$.

Lemma 2. let θ be a set of prime quotients of a lattice L of finite dimension, which satisfies the condition (1) of lemma 1. Let us define $x \equiv y(\theta)$ when $x \cup y$ and $x \cap y$ are connected by a set of prime quotients which are elements of θ . Then θ is a congruence relation on L.

Proof. In the first place θ gives an equivalence relation. For we have evidently reflexive and symmetric relation. It remains to prove transitive relation: $a \equiv b$, $b \equiv c(\theta)$ induce $a \equiv c(\theta)$. In fact $a \cup b \cup c/a \cup b$ is a projective quotient of $b \cup c/(a \cup b) \cap (b \cup c)$, and $b \cup c \geq (a \cup b) \cap (b \cup c) \geq b$, and $b \cup c/b$ is annulled by θ ; whence $a \cup b \cup c/a \cup b$ is annulled by θ . By hypothesis $a \cup b/a$ is annulled by θ . Thus $a \cup b \cup c/a$ is annulled and then $a \cup c/a$ is annulled, whence $a \equiv c(\theta)$.

Next θ preserves the univalence of the operations, that is $a \equiv b$, $c \equiv d$ induce $a \cup c \equiv b \cup d(\theta)$. To prove this we can assume a > b, c > d. $a \cup c/b \cup c$ is a transposed quotient of $a/a \cap (b \cup c)$, $a \geq a \cap (b \cup c) \geq b$, and then a/b is annuled by θ , thus by (1) $a \cup c/b \cup c$ is annuled. Similarly $b \cup c/b \cup d$ is annuled by θ , and then $a \cup c \equiv b \cup d$.

For two prime quotients p/q and r/s of a lattice of finite dimension, we write $p/q \ge r/s$ when there exists a quotient u/v which is a projective quotient of p/q and $u \ge r > s \ge v$. This definition obviously satisfies the axioms of partial ordering, and we denote by X this

¹⁾ G. Birkhoff, Lattice Theory, p. 43.