103. On the Congruence Relations on Lattices.

By Nenosuke Funayama.
Rikugun Yonen-gakko, Sendai.
(Comm. by M. FuJiWara, M.I.A., Nov. 12, 1942.)

G. Birkhoff ${ }^{1)}$ has proved that the congruence relations on any modular lattice of finite dimension form a Boolean algebra. The object of this paper is to prove that the congruence relations on any lattice of finite dimension form a distributive lattice.

By a "congruence relation" on a lattice with operation \cup and \cap is meant a division of its elements into subsets which preserves the univalence of the operations, e.g. makes the subset containing $x \cup y$ depends only on the subset containing x and the subset containing y, and also for $x \cap y$.

A congruence relation θ on any lattice L of finite dimension is determined by its prime quotients which θ annuls. (a / b is said to be annuled when $a \equiv b(\theta)$). We denote by θ the set of all prime quotients which θ annuls.

Lemma 1. θ satisfies the following condition. (1) When $a / b \in \theta$, u / v is any projective quotient of a / b, and p / q is such a prime quotient as $u \geqq p>q \geqq v$, then $p / q \in \theta$.

Proof. As u / v is a projective quotient of a / b which θ annuls, u / v is also annuled by θ. Then $p=u \cap p \equiv v \cap p=v, q=v \cup q \equiv u \cup q=u$, thus $p \equiv q$.

Lemma 2. let θ be a set of prime quotients of a lattice L of finite dimension, which satisfies the condition (1) of lemma 1 . Let us define $x \equiv y(\theta)$ when $x \cup y$ and $x \cap y$ are connected by a set of prime quotients which are elements of θ. Then θ is a congruence relation on L.

Proof. In the first place θ gives an equivalence relation. For we have evidently reflexive and symmetric relation. It remains to prove transitive relation: $a \equiv b, b \equiv c(\theta)$ induce $a \equiv c(\theta)$. In fact $a \cup b \cup$ $c / a \cup b$ is a projective quotient of $b \cup c /(a \cup b) \cap(b \cup c)$, and $b \cup c \geqq$ $(a \cup b) \cap(b \cup c) \geqq b$, and $b \cup c / b$ is annuled by θ; whence $a \cup b \cup$ $c / a \cup b$ is annuled by θ. By hypothesis $a \cup b / a$ is annuled by θ. Thus $a \cup b \cup c / a$ is annuled and then $a \cup c / a$ is annuled, whence $a \equiv c(\theta)$.

Next θ preserves the univalence of the operations, that is $a \equiv b$, $c \equiv d$ induce $a \cup c \equiv b \cup d(\theta)$. To prove this we can assume $a>b$, $c>d . a \cup c / b \cup c$ is a transposed quotient of $a / a \cap(b \cup c), a \geqq a \cap$ $(b \cup c) \geqq b$, and then a / b is annuled by θ, thus by (1) $a \cup c / b \cup c$ is annuled. Similarly $b \cup c / b \cup d$ is annuled by θ, and then $a \cup c \equiv b \cup d$.

For two prime quotients p / q and r / s of a lattice of finite dimension, we write $p / q \geqq r / s$ when there exists a quotient u / v which is a projective quotient of p / q and $u \geqq r>s \geqq v$. This definition obviously satisfies the axioms of partial ordering, and we denote by X this

[^0]
[^0]: 1) (. Birkhoff, Lattice Theory, p. 43.
