2. On the Axioms of the Theory of Lattice.

By Masatada Kobayasi.
Mathematical Seminary, Hokkaido Imperial University, Sapporo.
(Comm. by T. Takagi, m.I.A.; Jan. 12, 1943.)

1. System Σ.

Suppose that there is a set S of elements, between each two of which two dualistic operations \cup and \cap are so defined that their results are unique and belong to S. If the two operations satisfy the following postulates:

then the set S is called a lattice for the operations \cup and \frown^{11}.
G. Köthe and H. Hermes showed that if L 4 is satisfied then L1 does so (Enzyklopädie Bd. I-1 Heft 5, 13 (1939), and they took L 2L 4 as the axioms for the lattice.

Now, we replace the Absorptive law L 4 by a weaker postulate, viz. ${ }^{2}$,

L 4* (a) if $y \cup x=x$ then $y \cap x=y$,
(b) if $y \cap x=x$ then $y \cup x=y$;
and this, together with L1 (a), L 2, L3 will be taken as postulates for a "System Σ " ${ }^{3}$.

We shall demonstrate the independency of postulates of Σ. Before doing so, we enumerate some relations between these postulates.
(I) L 1 (a) and L 4 (a) imply L 1 (b). In fact, by L 1 (a),

1) Cf. Ore, On the Foundation of Abstract algebra 1, Ann. Math., 36, 409 (1935), Philip M. Whitmann, Free lattices, Ann. Math., 42, 325 (1941), and G. Birkhoff, Lattice theory, Ammer. Math. Soc. Coll. Pub. XXV (1940), etc.
2) In the case when L 2 holds, we may use instead of L4* (a) any one of the following three postulates: (1) if $x \cup y=x$ then $y \frown x=y$, (2) if $y \cap x=x$ then $x \frown y$ $=y$, (3) if $x \cup y=x$ then $x \frown y=y$, and also instead of L4 (b) any one of the three postulates: (1) if $x \frown y=x$ then $y \cup x=y$, (2) if $y \frown x=x$ then $x \cup y=y$, (3) if $x \frown y$ $=x$ then $x \cup y=y$.
3) In this "System Σ ", we may use the postulate $L_{1} 1$ (b), instead of $L 1$ (a). Cf. (1).
'Then by Footnote 2) there are 32 equivalent systems of postulates for a lattice.
