38. On the Duality Theorem of Non-commutative. Compact Groups.

By Kôsaku YOSIDA.

Mathematical Institute, Nagoya Imperial University. (Comm. by T. TAKAGI, M.I.A., April 12, 1943.)

1. The duality theorem of L. Pontrjagin¹⁾ concerning the compact commutative group was, by T. Tannaka²⁾, ingeneously extended to arbitrary compact group. To this extension, S. Bochner³⁾ and M. Krein⁰ respectively gave new proofs recently. They three all start with the proof of the positivity or the continuity of certain homomorphisms. The proof given below is a direct one and will be shorter than theirs. It may be considered as a simplification of Tannaka's original proof. Our method lies in the use of Gelfand-Silov's abstraction⁵⁾ of Weierstrass' polynomial approximation theorem.

2. Let \mathfrak{G} be a compact (=bicompact) Hausdorff group and let 11 be a complete set of mutually inequivalent, continuous, unitary, irreducible representations $U(s) = (u_{ij}(s))$ of \mathfrak{G} . The completeness (Peter-Weyl-Neumann's theory of almost periodic functions) implies: 1) for any pair of distinct points $s, t \in \mathfrak{G}$, there exists an $U(s) \in \mathfrak{l}$ such that $U(s) \neq U(t)$, 2) if $U_1(s), U_2(s) \in \mathfrak{l}$ then the product (complex conjugate) representation $U_1(s) \times U_2(s) (\overline{U}_1(s))$ is, as a unitary representation of \mathfrak{G} , completely reducible to a sum of a finite number of representations $\in \mathfrak{l}$. Let \mathfrak{R} be the totality of Fourier polynomials:

$$x(s) = \sum a_{ij}^{(\eta)} u_{ij}^{(\eta)}(s)$$
,

viz. finite linear combinations of $u_{ij}^{(\eta)}(s)$, where $\left(u_{ij}^{(\eta)}(s)\right) \in \mathbb{1}$ and $a_{ij}^{(\eta)}$ denote complex numbers. By 2) \Re is a ring with unit $e\left(e(s) \equiv 1 \text{ on } \mathfrak{S}\right)$ and complex multipliers. Here the sum and the multiplication in \Re is the ordinary function sum and function multiplication. Let \mathfrak{T} be the totality of the linear homomorphisms T of \Re onto the field \Re of complex numbers such that

(1)
$$\begin{cases} T \cdot e = 1, \\ T \cdot \bar{x} = \overline{T \cdot x} & \text{(bar indicates complex conjugates: } \bar{x}(s) = \overline{x(s)} \end{pmatrix}.$$

 \mathfrak{T} is not void since each $s \in \mathfrak{S}$ induces such a homomorphism T_s :

¹⁾ Topological groups, Princeton (1939).

²⁾ Über den Dualitätssatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. J., 45 (1938).

³⁾ 位相數學, 第 4 卷, 第 1 號 (昭和 17 年).

⁴⁾ On positive functionals on almost periodic functions, C. R. URSS, 30 (1941).

⁵⁾ Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Rec. Math., 9,7 (1941). Cf. H. Nakano: 連續函數 ring 及ビ vector lattice, 全國紙上數學談話會 218 (1941).