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1. The purpose of this paper is to prove the following two
theorems"

Theorem 1. Let x(,o) and y(o) be two real-valued non-negative
measurable functions defined on the interval 2 ( I0 o 1} of real
numbers which are not necessarily integrable on 2. If

IEy(,o)d,o < implies (,o)dw <(1)

for any measurable subset E of , then there exist a constant K and
a real-valued non-gative measurable function z(w) defined and inte-
grable on 2 such that

(2) x(o) Ky()+z(o) for any o e

Theorem 2. Let (a n 1, 2, } and {b n 1, 2, } be two se-
quences of real non-negative numbers not greater than 1, for which the
series a and

_
b, are not necessarily convergent. If

b a(3)

_
implies k=l k

for any subsequence (n]k=l, 2, ...} of the sequence (nn=l, 2,...
of all integers, then there exist a constant K and a sequence (c

C1, 2, } of real non-negative numbers, for which the series

_
is

convergent, such that

(4) an Kb+c for n= 1, 2,

The proof of these theorems will be given in 3.
2. Let 9 be an arbitrary set and let = (E} be a Borel field

of subsets E of 9. Let further (E) be a countably additive measure
defined on . We admit the value + for (E); but in case (9), it is assumed that there exists a sequence (E[n= 1, 2, } of
sets E,e such that (E,)< n 1 2, and U,-

A countably additive measure (E) defined on is regular if, for
any E e with 1 (E) , there exists an E e with E E and
0 < (E’) 1. It is easy to see that, if (E) is a relar countably
additive measure defined on , then for any positive number M and
for any Ee with M (E) , there exists an E’ e wih E’ E
and M (E’) M+ 1.

Theorem 3. Let (E) and (E) be two regular countably additive
measures defined on a Borel field = (E} of subsets E of a set

(5) (E) < implies (E) < ,
then there exists a constant K such that


