74 [Vol. 20,

18. Notes on Divergent Series and Integrals.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Feb. 12, 1944.)

§ 1. The purpose of this paper is to prove the following two theorems:

Theorem 1. Let $x(\omega)$ and $y(\omega)$ be two real-valued non-negative measurable functions defined on the interval $\Omega = \{\omega \mid 0 \leq \omega \leq 1\}$ of real numbers which are not necessarily integrable on Ω . If

(1)
$$\int_{E} y(\omega)d\omega < \infty \qquad implies \qquad \int_{E} x(\omega)d\omega < \infty$$

for any measurable subset E of Ω , then there exist a constant K and a real-valued non-negative measurable function $z(\omega)$ defined and integrable on Ω such that

(2)
$$x(\omega) \le Ky(\omega) + z(\omega)$$
 for any $\omega \in \Omega$.

Theorem 2. Let $\{a_n | n=1, 2, ...\}$ and $\{b_n | n=1, 2, ...\}$ be two sequences of real non-negative numbers not greater than 1, for which the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are not necessarily convergent. If

(3)
$$\sum_{k=1}^{\infty} b_{n_k} < \infty \quad implies \quad \sum_{k=1}^{\infty} a_{n_k} < \infty$$

for any subsequence $\{n_k | k=1, 2, ...\}$ of the sequence $\{n | n=1, 2, ...\}$ of all integers, then there exist a constant K and a sequence $\{c_n | n=1, 2, ...\}$ of real non-negative numbers, for which the series $\sum_{n=1}^{\infty} c_n$ is convergent, such that

$$(4) a_n \leq Kb_n + c_n for n=1,2,...$$

The proof of these theorems will be given in § 3.

§ 2. Let Ω be an arbitrary set and let $\mathfrak{B}=\{E\}$ be a Borel field of subsets E of Ω . Let further $\varphi(E)$ be a countably additive measure defined on \mathfrak{B} . We admit the value $+\infty$ for $\varphi(E)$; but in case $\varphi(\Omega) = \infty$, it is assumed that there exists a sequence $\{E_n \mid n=1,2,\ldots\}$ of sets $E_n \in \mathfrak{B}$ such that $\varphi(E_n) < \infty$, $n=1,2,\ldots$ and $\Omega = \bigcup_{n=1}^{\infty} E_n$.

A countably additive measure $\varphi(E)$ defined on $\mathfrak B$ is regular if, for any $E \in \mathfrak B$ with $1 \le \varphi(E) \le \infty$, there exists an $E' \in \mathfrak B$ with $E' \subseteq E$ and $0 < \varphi(E') \le 1$. It is easy to see that, if $\varphi(E)$ is a regular countably additive measure defined on $\mathfrak B$, then for any positive number M and for any $E \in \mathfrak B$ with $M \le \varphi(E) \le \infty$, there exists an $E' \in \mathfrak B$ with $E' \subseteq E$ and $M \le \varphi(E') \le M+1$.

Theorem 3. Let $\varphi(E)$ and $\varphi(E)$ be two regular countably additive measures defined on a Borel field $\mathfrak{B} = \{E\}$ of subsets E of a set Ω . If

(5)
$$\psi(E) < \infty$$
 implies $\varphi(E) < \infty$,

then there exists a constant K such that