16. On Group Rings of Topological Groups.

By Kenkichi IWASAWA.

Mathematical Institute, Tokyo Imperial University. (Comm. by T. TAKAGI, M.I.A., Feb. 12, 1944.)

§ 1. Let G be a locally compact topological group, satisfying the second axiom of countability and μ a left invariant Haar measure on G. We denote as usual by $L^{p}(G)$ $(p \geq 1)$ the set of all μ -measurable functions x(g) of G with finite

$$\|x(g)\|_{p} = \left\{ \int_{G} |x(g)|^{p} \mu(dg) \right\}^{\frac{1}{p}}.$$

For arbitrary $x(g) \in L^1(G)$, $y(g) \in L^p(G)$ and

(1)
$$z(g) = x \times y(g) = \int_G x(h)y(h^{-1}g)\mu(dh)$$

we have

(2) $||z||_p = ||x \times y||_p \le ||x||_1 ||y||_p$.

Defining the multiplication by (1) and putting

(3) $||x|| = \text{Max.} (||x||_1, ||x||_p),$

the intersection $L^{(1, p)}(G)$ of $L^{1}(G)$ and $L^{p}(G)$ thus becomes a noncommutative normed ring¹⁾. But, generally speaking, $L^{(1, p)}(G)$ has not a unit element. Adjoining therefore formally the unit e, I. E. Segal considered the set of all

 $\beta = \lambda e + x(g)$; $\lambda = \text{complex number}, \quad x(g) \in L^{(1, p)}(G)$,

and called it the group ring $R^{(1, p)}(G)$ of G^{2} . But we would rather prefer to call $L^{(1, p)}(G)$ itself the group ring of G. We shall give in this paper certain close relations between G and $L^{(1, p)}(G)$, some of which are generalizations of the results of I. E. Segal.

§ 2. We consider representations of G and $L^{(1, p)}(G)$, i.e. homomorphic mappings of G and $L^{(1, p)}(G)$ into matrices, whose components are complex numbers³⁾.

Our main theorem is then:

Theorem 1. There is a one-to-one correspondence between continuous⁴⁾ representations of $L^{(1, p)}(G)$ and bounded continuous representations of G in the following sense:

i) For a given continuous representation $x(g) \to T(x)$ of $L^{(1, p)}(G)$, there corresponds uniquely a bounded continuous representation $a \to D(a)$ of G, so that it holds

¹⁾ For normed rings cf. I. Gelfand: Normierte Ringe, Rec. Math., 51 (1941), 37-58.

²⁾ I.E. Segal: The group ring of a locally compact group, I, Proc. Nat. Acad. Sci., U.S.A. 27 (1940).

³⁾ For the representation of G, we do not require that the unit of G corresponds to the unit matrix.

⁴⁾ The topology in $L^{(1, p)}(G)$ is of course given by the norm ||x|| in (3).