13. On the Ergodicity of a Certain Stationary Process^{*}.

By Kiyosi ITÔ.

Mathematical Institute, Nagoya Imperial University. (Comm. by S. KAKEYA, M.I.A., Feb. 12, 1944.)

Let $x_t(\omega)$ be any strictly stationary process¹⁾. The probability law of the process $x_t(\omega)$ is a probability distribution on \mathbb{R}^R which is invariant by the mapping T_{τ} that transforms $f(t) \in \mathbb{R}^R$ into $f(t+\tau) \in \mathbb{R}^R$ for any τ . We shall say that the process $x_t(\omega)$ is ergodic in the (strongly) mixing type if it is the case with the group of the measurepreserving mappings $\{T_{\tau}\}^{2}$. We shall establish the

Theorem. Let $x_t(\omega)$ be any strictly³ stationary process of Gaussian type⁴ with the correlation function $\rho(\tau) \equiv \int_{-\infty}^{\infty} e^{i\lambda\tau} F(d\lambda)^{5}$. The sufficient condition that $x_t(\omega)$ should be ergodic in the (strongly) mixing type is that the spectral measure F is absolutely continuous.

Proof. It is sufficient to show the identity :

(1)
$$\lim_{\tau \to \infty} P\{(x_{s_1}, x_{s_2}, \dots, x_{s_m}) \in E_m, (x_{t_1+\tau}, x_{t_2+\tau}, \dots, x_{t_n+\tau}) \in E_n\}$$
$$\lim_{\tau \to \infty} P\{(x_{s_1}, x_{s_2}, \dots, x_{s_m}, x_{t_1+\tau}, x_{t_2+\tau}, \dots, x_{t_n+\tau}) \in E_m \otimes E_n\}$$

or

$$= P\{(x_{s_1}, x_{s_2}, \dots, x_{s_m}) \in E_m\} P\{(x_{t_1}, x_{t_2}, \dots, x_{t_n}) \in E_n\}$$

where E_m and E_n are any bounded Borel sets respectively in \mathbb{R}^m and in \mathbb{R}^n and $s_1 < s_2 < \cdots < s_m$, $t_1 < t_2 < \cdots < t_n$. We may assume $\mathscr{E}(x_t) = 0$ and $\mathscr{E}(x_t^2) = 1$ with no loss of generality.

If u_i , i=1, 2, ..., p, are all different, the matrix $\{\rho(u_i-u_j); i, j=1, 2, ..., p\}$ is strictly positive definite, that is $\sum_{i,j} \rho(u_i-u_j)\xi_i\overline{\xi}_j > 0$ for any system ξ_i , i=1, 2, ..., p, such that $\sum_i |\xi_i|^2 \neq 0$. In fact we have

(2)
$$\sum_{i,j} \rho(u_i - u_j) \xi_i \overline{\xi}_j = \int_{-\infty}^{\infty} |\sum_k e^{i\lambda u_k} \xi_k|^2 F(d\lambda) \ge 0.$$

If the last equality holds, we shall have $\sum_{k} e^{i\lambda u_k} \xi_k = 0$ for any spectrum of F. Since F is absolutely continuous, the set of all the spectra of F has accumulation points $\neq \infty$. Therefore $\sum_{k} e^{i\lambda u_k} \xi_k$, as an integral

^{*} The cost of this research has been defrayed from the Scientific Research Expenditure of the Department of Education.

¹⁾ Cf. A. Khintchine: Korrelationstheorie der stationären stochastischen Prozesse (Math. Ann. 109).

²⁾ Cf. E. Hopf: Ergodentheorie (Erg. d. Math.) 1937, p. 36, Def. 11.1.

³⁾ The condition "strictly" can be omitted since any weakly stationary process of Gaussian type is strictly stationary.

⁴⁾ Cf. A. Khintchine, loc. cit. 1), the remark at the end of §2.

⁵⁾ The correlation function of any stationary process can be always expressible in this form. Cf. A. Khintchine, loc. cit. 1).