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1. Generalities. In the theory of turbulence) the deviation of
the velocity from its mean may be considered as a system of random
vectors u(t, , o), 2=1,2, 3, where t(eR) is the time parameter and
(eR) denotes the position and (e(2, P)) is the elementary event.
Then we have

When the system {u(t,,)} is of Gaussian type, we say that the
turbulence is of Gaussian type.

Now we define the moment tensor of the turbulence by

(2) R(t, s, )= {u(t, , )u(s, , ))

Then R(t, s, ) is a positive-definite function of (, t, ) and (Z, s, )
in the sense of Bochner, namely we have

(3) R(t, s, )=R(s, t, ) and

(4) R(t, t, ) 0

in fact (3) is evident by (2) and the left side of (4) is equal to

[(u(t, , ))}. Conversely the function R(t, s, ) satisfy-

ing (3) and (4) may be considered as the moment tensor of a turbulence
of Gaussian type).

A turbulence is defined as temporally homogeneous, if its moment
tensor satisfies

(5) R(t+r, s+, )=RAt, s, )

It is defined as spatially homogeneous, if we have

(6) R,(t, + s, +)=R(t, s, ).

We say that it is isotopic if we have always

(7) k,k,R,,(t, s, +K(+))=R(t, s, )

for any orthogonal transformation K{k , Z= 1, 2, 3}. We can
easily prove by (3) that the isotropism implies the homogenuity.

* The cost of this research has been defrayed from the Scientific Expenditure of
the Department of Eduction.
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