47. Notes on Fourier Series (XII). **On Fourier Constants.**

By Tatsuo KAWATA.

Tokyo.

(Comm. by S. KAKEYA, M.I.A., April 12, 1944.)

1. G. H. Hardy proved¹⁾ that, if a_n are the Fourier sine or cosine coefficients of a function of $L_p(0, 2\pi)$, p > 1, then their arithmetic means $\frac{1}{n}\sum_{i=1}^{n}a_{k}$ are also Fourier coefficients of some function of L_{p} .

In this section, the author considers the another combination of Fourier coefficients instead of arithmetic means. From the well known K. Knopp's inequality

(1)
$$\sum_{n=1}^{\infty} \left(\sum_{k=n}^{\infty} \frac{a_k}{k} \right)^2 \leq 4 \sum_{n=1}^{\infty} a_n^2,$$

it readily results that if a_n are Fourier coefficients of a function of L_2 , then

(2)
$$\sum_{k=n}^{\infty} \frac{a_k}{k}$$

,

are convergent²⁾ and are Fourier coefficients of a function of L_2 . We ask here whether the similar results will hold for a function of L_p , $p \ge 1$. With regard to this we obtain the following theorem.

Theorem 1. Let p > 1 and a_n be the Fourier sine coefficients of a function of L_p . Then (2) are the Fourier sine coefficients of some function of L_p .

We have

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx dx$$
, $f(x) \in L_p(0, \pi)$, $p > 1$.

Thus

$$\sum_{k=n}^{\infty} \frac{a_k}{k} = \sum_{k=n}^{\infty} \frac{1}{k} \cdot \frac{2}{\pi} \cdot \int_0^{\pi} f(x) \sin kx dx = \frac{2}{\pi} \int_0^{\pi} f(x) \sum_{k=n}^{\infty} \frac{\sin kx}{k} dx,$$

where the change of order of integration and summation is legitimate since the series $\sum \frac{(\sin kx)}{k}$ is boundedly convergent.

Now since

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n} = \frac{\pi - x}{2} (0 < x < \pi)$$

we get

¹⁾ G. H. Hardy, On some points in the integral calculus 66. The arithmetic meanof Fourier constants, Messenger of Math. 58 (1928-29).

²⁾ It is well known that if a_n are Fourier sine coefficients, then $\sum a_n/n$ is convergent.