43. On the Normal Stationary Process with no Hysteresis.

By Kiyosi Itô.
Mathematical Institute, Nagoya Imperial University.
(Comm. by S. Kakeya, m.i.A., April 12, 1944.)
$\S 1$. Let (Ω, P) be a probability field and \mathfrak{M} a system of real valued random variables. \mathfrak{M} is called to be normal or of the Gaussian type, if, for any $x_{i}(\omega) \in \mathfrak{M}, i=1,2, \ldots, n$, the random variable $\left(x_{1}(\omega)\right.$, $\left.x_{2}(\omega), \ldots, x_{n}(\omega)\right)$ is subjected to an n-dimensional (sometimes perhaps degenerated) Gaussian distribution. This condition is equivalent to the property that, for any $x_{i}(\omega) \in \mathfrak{M}$, and for any real $a_{i}, \sum_{i=1}^{n} a_{i} x_{i}(\omega)$ is normally distributed. Let $x_{i}(\omega), i=1,2, \ldots, m, y_{j}(\omega), j=1,2, \ldots, n$, be elements in a normal system \mathfrak{M}. Then the non-correlatedness of $x_{i}(\omega)$ and $y_{j}(\omega)$ for any, $i, j, 1 \leqq i \leqq m, 1 \leqq j \leqq n$, implies the independence of $\left(x_{1}(\omega), x_{2}(\omega), \ldots, x_{m}(\omega)\right)$ and $\left(y_{1}(\omega), y_{2}(\omega), \ldots, y_{n}(\omega)\right)$.

Let $x(t, \omega),-\infty<t<\infty$, be a stochastic process. If the system of $x(t, \omega),-\infty<t<\infty$, is normal, then the process will be said to be normal. If the (conditional) probability law of $x(t, \omega)$ under the condition that $x\left(t_{1}, \omega\right), x\left(t_{2}, \omega\right), \ldots, x\left(t_{n}, \omega\right)$ should be given depends only on the value $x\left(t_{n}, \omega\right)$ for any $t_{1}<t_{2}<\cdots<t_{n}<t$, we say that $x(t, \omega)$ has no hysteresis or is a simple Markoff process. This terminology is applied to the case of a stochastic sequence $x(k, \omega), k=0, \pm 1, \pm 2, \ldots$.

In this investigation the author owes much to the suggestions given by Mr. T. Kitagawa and Mr. M. Ogawara.
§2. The form of the correlation function.
Theorem 1. Let $x(k, \omega)$ be a normal stationary (in the sense of A. Khintchine) sequence. A necessary and sufficient condition that $x(k, \omega)$ should have no hysteresis is that its correlation function $\rho(k)$ is of the form $\alpha^{k},-1 \leqq \alpha \leqq 1$.

Proof. In order to avoid trivial complications we assume $E_{\omega}(x(k, \omega))=0$, and $E_{\omega}\left(x(k, \omega)^{2}\right)=1$. If we define $(f(\omega), g(\omega))$ by $E_{\omega}(f(\omega) g(\omega))$, the closed linear subspace determined by the set $x(k, \omega)$, $k=0, \pm 1, \pm 2, \ldots$, is considered as a Hilbert space, where orthogonality implies (stochastic) independence (Cf. §1).

Sufficiency. For the proof it is sufficient to show that the conditional probability law of $x(k, \omega)$ under the condition that $x(k-i, \omega)$ $=\xi_{i}, i=1,2, \ldots, n$, depends only on ξ_{1}.

We put $y(k, \omega)=x(k, \omega)-\alpha x(k-1, \omega)$. Then we have $E_{\omega}(y(k, \omega) x(k-i, \omega))=\alpha^{2}-\alpha \mu^{i 1}=0, i=1,2, \ldots$. Since the sequence is normal, $y(k, \omega)$ is independent of ($x(k-1, \omega), x(k-2, \omega), \ldots, x(k-n, \omega)$). Therefore the probability law of $y(k, \omega)$ is invariant even if we add the condition: $x(k-i, \omega)=\xi_{i}, i=1,2, \ldots, n$. Therefore the probability

