56. Normed Rings and Spectral Theorems, V.

By Kôsaku Yosida.
Mathematical Institute, Nagoya Imperial University.
(Comm. by T. Takagi, m.I.A., May 12, 1944.)

1. Introduction. Recently, M. Krein ${ }^{1)}$ published a generalisation of the Plancherel's theorem to the case of locally compact (=bicompact) abelian group. The result is much important, since it reveals the hitherto hidden algebraic character of the classical Fourier analysis. However, Krein's proof of the positivity of the functional J is somewhat complicated and moreover it seems that his paper lacks the proof of 3° which is the key to the proof of the positivity of J. The purpose of the present note is to show that a complete proof may be obtained by making use of the preceding note ${ }^{2)}$. It is also to be remarked that the theorem below constitutes an extension of 3° and that, by virtue of this extension, Krein's arguments may be much simplified.
2. A theorem of positivity. Let G be a locally compact, separable abelian group and let X be the group (without topology for the moment) of continuous characters $\chi(g)$ of G. Then, by Haar's invariant measure $d g$, we may define the linear space $L_{p}(G)(\infty>p \geqq 1)$ of complexvalued measurable functions $x(g)$ such that $|x(g)|^{p}$ is summable over G:

$$
\begin{equation*}
\|x\|_{p}=\sqrt[p]{\int|x(g)|^{p} d g}<\infty \tag{1}
\end{equation*}
$$

A multiplication $x_{*} y$ is introduced in $L_{1}(G)$ by the convolution:

$$
\begin{equation*}
x * y(g)=\int x(g-h) y(h) d h \tag{2}
\end{equation*}
$$

By adjoining formally ${ }^{3}$ a unit e to $L_{1}(G)$ we obtain a normed ring $R(G)$ by the norm $\|z\|$ and the multiplication *:

$$
\left\{\begin{array}{l}
z=\lambda e+x(g), \quad\|z\|=|\lambda|+\|x\| \quad(\lambda=\text { complex number }), \tag{3}\\
z_{1}=\lambda_{1} e+x_{1}(g), \quad z_{2}=\lambda_{2} e+x_{2}(g), \\
z_{1} * z_{2}=\lambda_{1} \lambda_{2} e+\lambda_{1} x_{2}(g)+\lambda_{2} x_{1}(g)+x_{1} * x_{2}(g) .
\end{array}\right.
$$

Such ring is considered by I. Gelfand and D. Raikov ${ }^{41)}$.
We next introduce a new normed ring to be denoted as $\bar{R}_{o p}(G)$. For any $x \in L_{1}(G)$ and for any $y \in L_{2}(G)$ we have

$$
\begin{equation*}
x * y(g) \in L_{2}(G), \quad\|x * y\|_{2} \leqq\|x\|_{1} \cdot\|y\|_{2}, \tag{4}
\end{equation*}
$$

[^0]
[^0]: * The cost of this research has been defrayed from the Scientific Research Expenditure of the Department of Education.

 1) C. R. URSS, 30 (1941), No. 6.
 2) Proc. 19 (1943), p. 356. This note will be referred to as (I).
 3) The trivial case of the discrete group G is excluded in the following lines.
 4) C. R. URSS, 28 (1940), No. 3.
